Compton/Linac based Polarized Positrons Source

V. Yakimenko BNL

IWLC2010, Geneva, October 18-22, 2010

Polarized Positrons Source

- Polarized γ -ray beam is generated in Compton backscattering inside optical cavity of CO_2 laser beam and 6 GeV e-beam produced by linac.
- The required intensities of polarized positrons are obtained due to 5 times increase of the "drive" e-beam charge (compared to non polarized case) and 10 consecutive IPs.
- Laser system relies on commercially available lasers but need R&D on a new mode of operation.

Linac Compton Source: Numbers

	ILC	CLIC	SuperB		
Required e⁺/sec	3 10 ¹⁴	1.2 10 ¹⁴	3.2 10 ¹¹		
Required beam format	2856@5Hz	354@50Hz	1600@5min		
Source beam format	286@50Hz	354@50HZ	50@50Hz		
Required e⁺/bunch	3nC/2 10 ¹⁰	1nC/6 10 ⁹	20pC/1.2 10 ⁸		
e- beam energy	6 - 4 GeV				
γ beam peak energy	60 - 30 MeV				
Ne⁺/Nγ capture	2%				
e- bunch charge	15nC	5nC	1nC		
bunch length (laser&e beams)	3 ps				
Number of laser IPS	10	10	1		
Total N_{γ}/Ne^{-} yield (in all IPs)	10	10	1		
Ne⁺/Ne⁻ yield	0.2	0.2	0.02		
# of stacking	No stacking				

Compton Experiment at ATF

- More then 10⁸ of x-rays/per pulse were generated in the experiment N_x/N_{e-} ~ 0.35 in 2006- limited by laser/electron beams diagnostics
- Interaction point with high power laser focus of ~30mm was tested.
- Nonlinear limit (more then one laser photon scattered from electron) was verified..

First Order Fundamental Radiation

Second Order Harmonic Radiation

Compton based PPS with CO2 laser

- No positron accumulation is needed:
 - Efficient head-on collision due to higher divergence of CO2 beam.
 - $10 \mu m$ CO2 beam has 10x number of photons per laser energy.
 - 750 W average power industrial laser.
- · Easier target and efficient positron capture:
 - Beam format changed in the injector from 2820 bunches @5 Hz to 282 bunches @50 Hz (3 μs @50 Hz is more natural for warm RF and short pulse CO2 laser).
 - 40MV/m gradient in post target linac is possible.
 - Efficient collimation due to strong energy / divergence correlation of the gamma beam in the Compton scattering.
- Doable laser:
 - Commercially available components (designed for 750W@500Hz; needed 750W@50Hz).
 - Low repetition rate model (10Hz) is operational at ATF as an amplifier of 2-200 ps beam (laser cavity mode with 5ps pulse is needed).
- Can be add-on option for non-polarized linac source.

Choice of parameters

$$N_{\vec{\gamma}} = \frac{N_e N_{\vec{\phi}}}{S} \sigma_C$$

 N_{γ}, N_{e} and N_{ϕ} are the numbers of γ -rays, electrons and laser photons, \mathcal{S} is the area of the interacting beams and $\sigma_{\mathcal{C}}$ is the Compton cross sections

- $\, \cdot \,$ ~40 μm laser focus is set by practical considerations of electron and laser beams focusing and requires ~5 ps long laser pulses
- Nonlinear effects in Compton back scattering limit laser energy at ~2J
- Pulse train structure of 2820 bunches @ 5 Hz is set by main linac.
 We change it to 282 bunches at 50Hz. This mode is more natural for warm RF and lasers.
- $\,^{\sim}$ 300ns bunch spacing in the main linac will be changed in the dumping ring in any design. 6-12 ns bunch spacing is selected for optimal current in the drive linac and to match the inversion life time of the laser 12ns *282 bunches = 3.4 μs .
- Train of ~10 nC electron bunches is required to produce 10^{12} polarized gammas per bunch. (~1 γ -ray per 1 electron per laser IP)
- Conversion efficiency of polarized gammas into captured polarized positrons is estimated at ~2% and is subject of optimization.

Excimer laser convertible to CO2

10 J per pulse, 100 Hz repetition rate, 1 kW average power Price ~5 M\$

CO2 Laser Re-Circulation

 Simulations demonstrate good beam quality preservation for a reamplified laser pulse over the duration of the macro-bunch.

Monoenrgetic ion beam by Radiation Pressure Acceleration from H₂ gas jet

		Apr. 2009	Feb. 2010	Nov. 2010	Nov. 2011	??
Energy	[J]	5	5	5	10 (IV)	2!
Duration	[ps]	2 x 5 (I)	5 (II)	5	2 (IV)	0.
Power	[TW]	0.5	1	1	5	5
a_0		1.2	1.7	2.2 (III)	4.9	16
Ep	[MeV]	1.5	3 (?)	5	25	2!

- I. laser pulse was split into two due to imperfect amplification spectrum
- II. isotopic mixture was used to demonstrate single pulse amplification
- III. improved laser focusing is expected to increase laser intensity
- IV. Ti:Sapphire seed laser is purchased (Sept. 2010) to shorten CO2 see

Single 5 ps pulse amplification

Time structure a 5-ps laser pulse circulating in a laser amplifier: (a) and (b) simulated for a regular 10-atm laser gas composition and for the 10-atm multi-isotope laser; (c) experimental result (streak camera trace) for a 5-ps laser pulse amplified in a 10-atm regenerative CO2 laser filled with regular gas; (d) same for the laser with isotopic gas mixture.

Phase contrast imaging using Compton X ray beam

Phase contrast imaging (INFN), First proposed by Snigirev (1995)

Single shot measurements at ATF

Compton with recirculated 1 µm laser

(RadiaBeam, funded by DOD)

Laser Recirculation

- Several different techniques were studied; we chose:
 - Recirculation Injection by Nonlinear Gating (RING)
 - Developed at LLNL [I. Jovanovic et al]
- Advantages: simple, inexpensive, can handle high power
- Disadvantage: "ring-down"
- Challenges: timing, alignment, maintaining good laser focus through many recirculations

Compton with recirculated 1 μ m laser

(RadiaBeam, funded by DOD)

Project overview

• RING will be implemented inside the vacuum box. Electron beam is focused to the IP with PMQs.

Compton with recirculated 1 µm laser (RadiaBeam, funded by DOD)

Bunch Train Generation

- In preparation 20 pulses bunch train, 300 pC each beamlet has been generated (April 2010).
- Next experimental run will focus on beam loading mitigation and radiation hardening test of the RING dielectric mirrors.

Conclusion

- Linac based Compton source can reach required intensities without stacking and is an attractive upgrade option for a conventional source.
- · Requires
 - development of CO2 regenerative cavity,
 - high repetition rate operations
- There is an active program to use highest Compton X ray peak flux for single shot user experiments:
 - Started with High efficiency conversion ~1x ray / 1 electron, Spatial distribution of second harmonic (U. Tokyo, KEK)
 - Phase contrast imaging (INFN)
 - Diffraction scattering on the crystal (UCLA)
- There is an active CO2 development program at ATF
 - required for ILC pulse parameters and amplifier bandwidth is demonstrated
 - Gradual increase of the single pulse intensity is the main goal.