

# Overview of Undulator-Based Sources for LC

Ian Bailey

**Cockcroft Institute/ Lancaster University** 

IWLC October 21st, 2010

#### Outline of Talk

- Undulator positron sources
  - ILC (see Wednesday's talk by J. Clarke)
  - CLIC (see Wednesday's talk by L. Rinolfi)
- Status of rotating target prototype
- Zeuthen LC positron source wiki

#### Nominal Undulator-based Positron Source Layout



- **■**Centre of undulator to target: ~500m
- ■Active (K=0.92, period=1.15cm) NbTi undulator length: ~150m → 250m
  - ➤ Energy losses in undulator ~few GeV
    - >0.02 GeV/m ILC at 150GeV
    - >0.05GeV/m CLIC at 250GeV
  - ➤Target Power Load ~20kW + eddy current heating ~20kW (assuming 0.4X0 Ti alloy target)
  - ➤ Beam spot: ~ 1 →2 mm rms

- Layout
- Undulator
  - Prototype module operated at design current
- Collimator
- Target
- Capture Optics
  - SB2009 undulator length assumes QWT
  - 1ms pulsed FC design under development
  - See Tom Piggott's talk (Thu afternoon)

### ILC Schematic Layout for 10Hz Operation



# TLC RDR Undulator Positron Yield



#### **Photon Collimator**

Recommendation from ILC positron source meeting in Durham (2009) was to include a tungsten/graphite collimator of radius 2mm.

Yield and Polarization vs Aperture Radius of Photon Collimator







Same specification works for SB2009 (2.5kW in collimator)

A. Ushakov, DESY

# **ILC Target R&D**

- Eddy currents
  - Daresbury prototype
- Shockwave simulations
  - FlexPDE (S. Hesselbach, Durham → DESY)
  - ANSYS (L. Fernandez-Hernando, Daresbury)
- Shockwave experiments
  - FLASH(?)
  - https://znwiki3.ifh.de/LCpositrons/TargetShockWaveStudy
- Optimising rim design for auxiliary source and 10Hz
  - Machiolate rim?
- Material fatigue

#### Shockwave Simulation Status

- Large negative pressures on exit face only seen if bunch is made more compact than for ILC RDR
- •Even this effects disappears when the time step is smaller than 10<sup>-14</sup> s

Ti target, RDR bunch size,  $t = 3 \times 10^{-11}$  s

# Contours of *P* in MPa P on beam axis Heatflow and pressure in target with gdot First PDE 6.12 P make 48.3 13 50.49 7/12/10 First PDE 6.12 P make 48.3 13 50.49 7/12/10 First PDE 6.12 P make 48.3 13 50.49 7/12/10 First PDE 6.12 P make 48.3 13 50.49 7/12/10 First PDE 6.12 P make 48.3 First PDE 6.12 First PDE 6.12

# Shockwave Simulation Status (2)

•ANSYS simulations unable to simulate multiple bunches with time steps of 1ps or less



L. Fernandez-Hernando, Daresbury

# Target Prototype Design

Prototype I - eddy current and mechanical stability



# Characterising Frictional Forces



# Effect of B Field on Average Torque





- The plots show a quadratic fit to the measured torques (≤ 1500rpm) where the effects due to bearing friction have been removed.
- The colours represent different immersion depths of the wheel in the field.

## **ELEKTRA Model**

19/May/2010 21:43:04



# Comparison of air and steel cored ELEKTRA models



•20% increase in predicted torque.

#### **ELEKTRA Model Prediction**



# Carmen (spoke) Model Simulations



#### **CARMEN Model Prediction**



Peak (yellow), average (magenta) and minimum (blue) torques as predicted by the CARMEN model for rim immersed in a field of peak strength ~0.5T. Immersion ~30.25mm (?)

The red line shows the current best fit from the data. Spoke effects appear to be far smaller than indicated by the CARMEN model.

# Target Prototype Summary

- Data-taking is 'complete'
- The rim target can operate in fields ~1.5T (~20kW heating)
  - Fatigue issues?
- ... However, discrepancy between measured and predicted torque is still not fully understood.
- We are checking
  - Torque calibration v power consumption
  - Conductivity of wheel samples
  - Model assumptions (access to CARMEN model)
- Aiming for a paper by the end of 2010...

- Reduced beam current ⇒ reduced load on target
- Pulse energy deposition in target < 35J/g</li>
- However, short pulse removes advantage of rapid rotation
- Low rotation rate (~50rpm)
  - eddy currents negligible
  - 20kW for ILC at 1.5T → 50W for CLIC
- Can use s/c AMD

• "UNDULATOR BASED POSITRON SOURCE OPTIMISATION FOR CLIC", L. Zang, A. Wolksi, I. Bailey, IPAC10

|                              | Option 1          | Option 2          |
|------------------------------|-------------------|-------------------|
| Electron energy in undulator | 150 GeV           | 250 GeV           |
| Undulator period             | 11.5 mm           | 11.5 mm           |
| Deflection parameter         | 0.92              | 0.92              |
| Undulator length             | 100 m             | 32 m              |
| Average photon energy        | 10.5 MeV          | 29.7 MeV          |
| Power deposition in target   | $3.3 \mathrm{kW}$ | $1.8 \mathrm{kW}$ |
| Positron yield               | 1.5               | 1.5               |
| Positron polarisation        | 33%               | 24%               |

 "AN UNDULATOR BASED POLARIZED POSITRON SOURCE FOR CLIC", W. Liu, W. Gai. L. Rinolfi, J. Sheppard, IPAC10





Using ILC DR acceptance

Using CLICPDR acceptance



#### Positron Source Wiki

- Content at the positron source web pages at
  - http://www.ippp.dur.ac.uk/LCsources/index.html
  - is being reduced.
- Please consider using the new Wiki.
  - https://znwiki3.ifh.de/LCpositrons/LCpositrons
- It's more accessible than EDMS!
- Current content relates mainly to ILC, but CLIC material could also be added.
- Just click the 'login' button in the top right to create an account.