Beam-based alignment of CLIC Drive Beam decelerator using girders movers

Guido Sterbini, CERN BE-ABP

ALCPG11, Eugene, Oregon 22 March, 2011

Acknowledgments to D. Schulte, E. Adli, A. Latina and F. Stulle...

- Introduction
 - The stability requirement on the CLIC DB current
 - The DB decelerator steering
- Methods and results
 - Girders movers steering vs quadrupole steering
 - The performance of the girder mover
 - Ground motion studies
- Conclusions

The CLIC DB is the RF source for the MB accelerating structures.

1 The I_{DB} pulse to pulse stability maximizes \mathcal{L} :

$$|\frac{\Delta I_{DB}}{I_{DB}}| \simeq 8 \ 10^{-4}
ightarrow \frac{\Delta L}{L} \simeq -0.01$$

② An optimized I_{DB} transport maximizes the overall η .

90% energy spread

The longest decelerator is ≈ 1050 m and has to transport a beam with a large energy spread trough a FODO lattice.

Weak focusing for high energy

The FODO gradient is chosen wrt the lower energy particle therefore the higher energy particles are under-focused. The linear optics is dominated by the Q (negligible PETS effect).

Beam envelope (ideal machine)

The ideal machine has an max envelope of \approx 3 mm (radius) to compare with the aperture of 23 mm. It is driven by the lower energy particles.

Impact of misalignments

By displacing the quads by few μ m in H or V, the beam envelope increases significantly. The envelope growth is non linear wrt the energy (resonances).

Beam envelope (ideal machine)

The ideal machine has an max envelope of \approx 3 mm (radius) to compare with the aperture of 23 mm. It is driven by the lower energy particles.

Impact of misalignments

By displacing the quads by few μ m in H or V, the beam envelope increases significantly. The envelope growth is non linear wrt the energy (resonances).

GOAL \rightarrow max(envelope) > 5.75 mm (R/2) for < 0.1 \div 1% of cases.

- Moving the quads (BASELINE),
- Using dipole corrector integrated in the quads,
- Moving the girders to adjust the quads positions:
 - PRO: reduction of system complexity.
 - CON: we cannot adjust the single quadrupole position (expected loss in efficiency).

- Moving the quads (BASELINE),
- Using dipole corrector integrated in the quads,
- Moving the girders to adjust the quads positions:
 - PRO: reduction of system complexity.
 - CON: we cannot adjust the single quadrupole position (expected loss in efficiency).

- Moving the quads (BASELINE),
- Using dipole corrector integrated in the quads,
- Moving the girders to adjust the quads positions:
 - PRO: reduction of system complexity.
 - CON: we cannot adjust the single quadrupole position (expected loss in efficiency).

- Moving the quads (BASELINE),
- Using dipole corrector integrated in the quads,
- Moving the girders to adjust the quads positions:
 - PRO: reduction of system complexity.
 - CON: we cannot adjust the single quadrupole position (expected loss in efficiency).

Working hypotheses

Parameters	Units	Value
RMS QUADS misalignment	μ m	15-50
RMS PETS misalignment	μ m	100
RMS BPM misalignment	μ m	20
RMS QUADS tilt	mrad	1
RMS PETS tilt	mrad	1
RMS BPM tilt	mrad	1
BPM resolution	μ m	2
Movers resolution	μ m	2
ϵ_n (H and V)	mm mrad	150

- We consider mainly 1-to-1 and DFS algorithms.
- Simulations are done for the vertical plane and for the longest decelerator.

Using quadrupole movers → excellent performance

Using girders movers \rightarrow problems, strong dependence on σ_a

Q: The 'bad' performance of the girder movers is due to an intrinsic limit of the method or of the chosen algorithm?

A: We think it is an algorithm limit, in fact we know that there are

better solutions for correction (algorithm needs further studies).

Q: The 'bad' performance of the girder movers is due to an intrinsic limit of the method or of the chosen algorithm?

A: We think it is an algorithm limit, in fact we know that there are

A: We think it is an algorithm limit, in fact we know that there are better solutions for correction (algorithm needs further studies).

Q: The 'bad' performance of the girder movers is due to an intrinsic limit of the method or of the chosen algorithm?

A: We think it is an algorithm limit, in fact we know that there are

better solutions for correction (algorithm needs further studies).

Q: The 'bad' performance of the girder movers is due to an intrinsic limit of the method or of the chosen algorithm?

A: We think it is an algorithm limit, in fact we know that there are better solutions for correction (algorithm needs further studies).

How often do we need to realign the decelerator?

Assuming ATL ground motion with A=0.5 $10^{-6}~\mu\text{m}^2/$ (s m) after 1-2 months we observe in simulations $100\div200~\mu\text{m}$ of envelope growth: we can correct it by 1-to-1 correction on the golden orbit.

How often do we need to realign the decelerator?

Assuming ATL ground motion with A=0.5 $10^{-6}~\mu m^2/$ (s m) after 1-2 months we observe in simulations $100 \div 200~\mu m$ of envelope growth: we can correct it by 1-to-1 correction on the golden orbit.

How often do we need to realign the decelerator?

Assuming ATL ground motion with A=0.5 $10^{-6}~\mu m^2/$ (s m) after 1-2 months we observe in simulations $100 \div 200~\mu m$ of envelope growth: we can correct it by 1-to-1 correction on the golden orbit.

Summary

- From the HW perspective, the steering with girders reduces the system complexity.
- Compared to the quadrupole steering there is a reduction of performance: in particular the performance depends on the alignment of the quadrupoles on the girder.
- For $\sigma_q <$ 20 $\mu \mathrm{m}$ the performance of DFS with girders seems acceptable.
- For $\sigma_q \approx 50 \ \mu \text{m}$:
 - DFS algorithm: $\leq 1\%$ of the decel's with r>7 mm,
 - algorithm under study: $\leq 1\%$ of the decel's with r>4.5 mm.
- The decelerator is robust wrt the ground motion: a 1-to-1 correction each months and a DFS each year seems enough, assuming ATL model with A=0.5 $10^{-6} \mu m^2$ (s m).

Summary

- From the HW perspective, the steering with girders reduces the system complexity.
- Compared to the quadrupole steering there is a reduction of performance: in particular the performance depends on the alignment of the quadrupoles on the girder.
- For $\sigma_q <$ 20 $\mu \mathrm{m}$ the performance of DFS with girders seems acceptable.
- For $\sigma_q \approx 50 \ \mu \text{m}$:
 - DFS algorithm: $\leq 1\%$ of the decel's with r>7 mm,
 - algorithm under study: $\leq 1\%$ of the decel's with r>4.5 mm.
- The decelerator is robust wrt the ground motion: a 1-to-1 correction each months and a DFS each year seems enough, assuming ATL model with A=0.5 $10^{-6}~\mu m^2/(s~m)$.

Thank you!