Undulator-Based Positron Source with Photon Collimator and QWT

O. S. Adeyemi¹, V. Kovalenko¹, G. Moortgat-Pick^{1,2}, S. Riemann², A. Schälicke², <u>A. Ushakov¹</u>

> ¹ University of Hamburg ² DESY

Linear Collider Workshop of the Americas

20 March 2011

Outline

- PPS-Sim model of positron source
- Field of QWT
 - Simplified field distribution of QWT
 - More realistic QWT field
 - Yield and polarization of source with QWT
- Photon collimator
 - Implementation of collimator in PPS-Sim
 - Heat load in collimator
- Summary
- Status of Activation Studies

PPS-Sim Model of Positron Source

QWT Field

Geometry of QWT has been provided by Wanming Liu and Wei Gai

Implemented QWT Field in PPS-Sim

 B_z -field profile along beam axis downstream the target

red line — field between target and background solenoid blue line — field inside of background solenoid and RF cavity

QWT Settings in PPS-Sim

GUI: QWT Settings

Preferences - • ×		
Beam Collimator	Target OMD	
○ AMD ○ QWT 1 ○ Li-Lens		
QWT 2		
Aperture Radius	20.0 mm	ØK 🦪
Length	130.0 mm	Save
Distance to Target	13.0 mm	📄 Open
Distance to RF	30.0 mm	X Cancel
Max Field	1.0 T	Apply
Taper Parameter	0.000 1/mm	
Current	0.0 kA	
Window Material	G4_Be 💌	
Window Thickness	0.50 mm	

- All parameters of QWT Model 1 (geometry and field) can be adjusted
- Only maximal field of QWT Model 2 can be changed

Not all geometry and field parameters of positron source are available in EDMS. This work is ongoing.

Comparison of QWT (Model 2) with ANL Results

Some PPS-Sim settings:

- Length of RDR undulator is 231 m
- Distance between middle of undulator to target is 500 m
- Aperture radius of photon collimator is 2 mm
- Distance between target and QWT focusing solenoid is 13 mm
- QWT focusing solenoid length is 130 mm
- Distance between QWT focusing solenoid and background solenoid is 30 mm
- Maximal field of QWT focusing solenoid is 1.5 Tesla
- Field of background solenoid is 0.5 Tesla

Yield and Polarization vs Drive Beam Energy

Note: ANL data was taken from Wei Gai BAW-2 talk

PPS-Sim: Comparison of Two QWT Models

- Without photon collimator
- Both models have similar geometry (same position and length of coils)
- Maximal field of focusing solenoid is 1 T

Simplified Model No. 1 can be used for "optimization" studies

PPS-Sim: Choice of Photon Collimator

Virtual Collimator

(no Physical Object)

Preferences Preferences _ 0 × _ 0 × Beam Collimator Target OMD a b Beam Collimator Target OMD ∎∢l⊁ × use Virtual Collimator use Virtual Collimator Radius of Virual Collimator 2.30 mm Radius of Virual Collimator JOK OK JOK use Real Collimator × use Real Collimator . R Aperture of Front Part Save R Aperture of Front Part 2.3 mm Save -٠ Dpen Dpen R Aperture of Back Part R Aperture of Back Part 2.3 mm -• X Cancel X Cancel Length of Front Part Length of Front Part 9.0 cm * Apply • Apply Length of Back Part Length of Back Part 9.0 cm -Material of Front Part Material of Front Part G4 C --Material of Back Part G4 W Material of Back Part G4 W -

"Real" Collimator

Model of Lei Zang (U Liverpool)

Yield and Polarization vs Radius of Collimator

- 250 GeV drive beam
- 231 m RDR undulator
- QWT Model 2
- 1.5 T max. field of focusing solenoid

Yield and Polarization vs Radius of **Virtual** Collimator

Energy Deposition in Collimator

250 GeV e-, RDR undulator, collimator with 2 mm aperture radius placed \approx 500 m downstream the undulator

Deposited Energy Map

Deposited Energy along $r \simeq 0.2$ cm

Tungsten: PEDD = 5.6 MeV/photon/cm³ = ??? J/g

PEDD in Collimator with Aperture Radius of 2 mm

e ⁻ Beam Energy	250 GeV
No. of e ⁻	$2 \cdot 10^{10} e^{-/bunch}$
No. of Bunches	1312 bunches/train
Undulator Type	RDR
Undulator-Collimator Distance	≈500 m
No. of Photons	1.94 ph/(e ⁻ m)
Required Undulator Length (QWT)	70 m*
No. of Photons	3.6 · 10 ¹⁵ ph/train
PEDD in Tungsten Part	5.6 MeV/ph/cm ³
Density of W	19.3 g/cm ³
PEDD in Tungsten Part	165.5 J/g/train
Heat Capacity of W at $25^{\circ}C$	0.134 J/g/K
Max. Temperature Increase	1235 K/train

 * Required undulator length has been calculated by Wei Gai and Wanming Liu for source with QWT to achive 1.5 $e^{+}\!/e^{-}$

PEDD: SLC Target

Werner Stein, SLC Positron Target Workshop, April 24, 2001

e ⁻ Beam Energy	33 GeV
e $^-$ Beam Size σ	0.8 mm
No. of e ⁻	$4 \cdot 10^{10} e^{-}$ /bunch
No. of Bunches	1 bunch/train
PEDD in 6 X ₀ W25Re	89 GeV/e ^{-/} cm ³
Density of W25Re	19.77 g/cm ³
PEDD	29 J/g/train

David C. Schultz et al. LCC-0082, June 2002: PEDD = 28 J/g

Summary

- More realistics field of QWT has been implemented in PPS-Sim
- PPS-Sim results for source with QWT are in agreement with ANL group simulation results
- More simple QWT model could be also used for "optimization" studies
- One model of photon collimator (graphite + tungsten) has been added to PPS-Sim
- PEDD in collimator even with moderate aperture size (r = 2 mm) is very high. Additional (ANSYS) studies are needed

Activation of Target Area. Sketch Concrete Shielding

provided by Norbert Collomb, Neil Bliss (STFC, 2009)

Status of Activation Studies in DESY/Uni Hamburg

Last results: A. Ushakov et al. LCWA, October 2009

What has been done?

- Dose equivalent in soft tissue has been estimated in target area for "SB2009 parameter set" during source operation and residual dose rates after source switched off
- Thickness of concrete shielding (required to protect working staff) has been calculated
- FLUKA model includes the following *simplified* source parts:
 - shielding box
 - target rim
 - flux concentrator (state on middle of 2009)
 - 1st RF structure embedded into background solenoid

What is necessary to continue?

- Add to model the missing parts inside concrete shielding box:
 - QWT, background solenoid
 - collimator
 - vacuum chamber ...
- Define dose limits for staff (10 µSv/h behind shielding wall and just after source switched off?) and limits for equipment (target motor, seals etc.)
- Man-power