Analysis of DHCAL Muon Events

José Repond Argonne National Laboratory

General DHCAL Analysis Strategy

Noise measurement

- Determine noise rate (correlated and not-correlated)
- Identify (and possibly mask) noisy channels
- Provide random trigger events for overlay with MC events

Measurements with muons

- Geometrically align layers in x and y
- Determine efficiency and multiplicity in 'clean' areas
- Simulate response with GEANT4 + RPCSIM (requires tuning 3-4 parameters)
- Determine efficiency and multiplicity over the whole 1 x 1 m²
- Compare to simulation and tuned MC
- Perform additional measurements, such as scan over pads, etc...

Measurement with positrons

- Determine response
- Compare to MC and tune 4^{th} (d_{cut}) parameter of RPCSIM
- Perform additional studies, e.g. software compensation...

Measurement with pions

- Determine response
- Compare to MC (no more tuning) with different hadronic shower models
- Perform additional studies, e.g. software compensation, leakage correction...

This talk

The DHCAL Project

Argonne National Laboratory
Boston University
Fermi National Accelerator Laboratory
IHEP Beijing
University of Iowa
McGill University
Northwestern University
University of Texas at Arlington

DCHAL Collaboration	Heads
Engineers/Technicians	22
Students/Postdocs	8
Physicists	9
Total	39

...and integral part of

The DHCAL in the Test Beam

DHCAL RPC_TCMT SC_TCM **Total RPC Date** Total layers layers **T layers** layers layers 10/14/2010 - 11/3/2010 Run I -38 0 16 38 54 1/7/2011 - 1/10/2011 0 8 38 38 46 1/11/2011 - 1/20/2011 4 8 42 38 50 Run II 1/21/2011 - 2/4/2011 38 9 6 47 53 2/5/2011 – 2/7/2011 38 13 0 51 51

Readout

channels

350,208+320

350,208+160

387,072+160

433,152+120

470,016+0

Beam and Trigger for Muon events

Run	# of muon events
October 2010	1.4 Million
January 2011	1.6 Million

Some cute muon events

Note:

Consecutive events (not selected)

Look for random noise hits

Run 998:0 Event 1208

Hits: 74 Energy: xxx mips

Tracking

Clustering of hits

Performed in each layer individually

Use closest neighbor clustering (one common side)

Determine unweighted average of all hits in a given cluster $(x_{cluster}, y_{cluster})$

Loop over layers

<u>for layer i</u> request that all other layers have N^j_{cluster} ≤ 1

request that number of hits in tracking clusters $N_{hit}^{j} \le 4$, otherwise don't use this cluster for tracking request at least 10/38(51) layers with tracking clusters

fit straight line to $(x_{cluster},z)$ and $(y_{cluster},z)$ of all tracking clusters j calculate χ^2 of track

$$\chi^{2} / N_{track} = \sum_{j \neq i} \frac{(x_{cluster}^{j} - x_{track}^{j})^{2}}{1} + \sum_{j \neq i} \frac{(y_{cluster}^{j} - y_{track}^{j})^{2}}{1}$$

request that $\chi^2/N_{track} < 1.0$ inter/extrapolate track to layer i search for matching clusters in layer i within

$$R = \sqrt{(x_{cluster}^i - x_{track}^i)^2 + (y_{cluster}^i - y_{track}^i)^2} < 2.5cm$$

record number of hits in matching cluster

Alignment

For each layer i plot residual in x/y

$$R_{x}^{i} = x_{cluster}^{i} - x_{track}^{i}$$

 $R_{y}^{i} = y_{cluster}^{i} - y_{track}^{i}$

Dimensions in [cm]

Most distributions look OK (Dimensions in [cm])

Few have double peaks

Residuals for each Front-end board versus layer#

Mean of residual distributions

x-residual

Variations of < 3 mm

Alignment of layers by hand

Correlation between the 6 boards within a layer

y-residual

Variations < 0.5 mm

Cassette resting on CALICE structure

Systematic trend compatible with cassettes being lower in center of stack

Residuals for each Front-end board or layer

1 entry/readout board

x-dimension

y-dimension

Note

Mean by construction close to 0

Use average residual to align layers

1 entry/ readout board

1 entry/ layer

Works nicely!

Remaining residuals after alignment

1 entry/ readout board

RMS = **570/130 μm** for ROBs

1 entry/ layer

RMS = $70/14 \mu m$ for layers

Scan across pad

 $x = Mod(x_{track} + 0.5,1.)$ for 0.25 < y < 0.75 $y = Mod(y_{track} - 0.03,1.)$ for 0.25 < x < 0.75

Note

These features **not** implemented explicitly into simulation
Simulation distributes charge onto plane of pads...

Tracking resolution to be determined (using fishing lines e.g.)

Angles of muon tracks

Data

Data

CALICE Preliminary

GEANT4 + (not-yet-tuned) **RPCSIM**

Monte Carlo

CALICE Preliminary

Note

Incident angle distribution in MC tuned to reproduce data Result **good enough**

Efficiencies, multiplicities

Select 'clean' regions away from

- Dead ASICs (cut out 8 x 8 cm² + a rim of 1 cm)
- Edges in x (2 rims of 0.5 cm)
- Edges in y (6 rims of 0.5 cm)
- Fishing lines (12 rectangles of ±1 cm)
- Layer 27 (with exceptionally high multiplicity)

Measure average response

Note: Simulation of RPC response tuned to Vertical Slice Test

DHCAL shows higher efficiency and lower multiplicity (thinner glass)

Tuning, tuning, tuning...

χ^2 comparison of normalized histograms of multiplicity

Note: Tuning done 'by hand' Very large statistics of both data and simulation \rightarrow large χ^2 No significant improvements after trial #70

Current best fit

Note: High statistics (error bars « dots)

Efficiency well reproduced

Low multiplicity well reproduced

Tail problematic (excess of 0.6% in the data)

Systematic studies of track selection, functional form \dots

Efficiency = 93.6% in data 93.8% in MC

Multiplicity = 1.563 in data

1.538 in MC

Mean = 1.461 in data

1.443 in MC

Response over the entire plane

Implemented dead areas of data in MC (= corresponding hits deleted)

x-distribution

Well reproduced, apart from edges

y-distribution

Inter-RPC gaps well reproduced Fishing lines well reproduced Edges again problematic

Note

x-axis in [cm] not [pad number]

Average response over the entire plane

Note: There are systematic uncertainties

- → due to track selection
- → still need to be studied

These numbers exclude the dead areas

Some tuning of the MC still needed

Efficiency = 90.9% in data 92.1% in MC

Multiplicity = 1.611 in data 1.535 in MC

Mean = 1.464 in data 1.411 in MC

Response versus layer number

Dead areas, fishing lines, and edges are excluded

 $Logz \leftarrow same plot \rightarrow Linz$

Note

Reasonable uniformity from layer to layer

Calibration constants, etc...

Tail catcher is cooler

→ lower efficiency, multiplicity

Calibration factors = mean of multiplicity distribution = $\varepsilon \cdot \mu$

Calibration constants as function of time

Note

Variations of +7.0 to -2.5%

Data points of equal color indicate same day measurements

Track segment analysis

Method

Use clusters (= source clusters) in 2 layers to study layer in between (=target cluster) e.g. use L_{i-1} and L_{i+1} to look at L_i

Source clusters

Required to have at most 3 hits Lateral distance between source clusters at most 3 cm No additional hits within 7 cm of source clusters

Target cluster

Searched for within radius of 2 cm from line between source clusters

Comparison of

Muon runs analyzed with tracks
Muon runs analyzed with track segments
Pion run analyzed with track segments

Clear correlation between different methods ...but systematic differences

Conclusions

Analysis of muon events has begun

Preliminary results have been presented

Geometrical alignment

Response across pad

Performance parameters in 'clean' regions

Performance parameters over the entire plane

Performance as function of time

Comparison with track segment method

Results compared to **GEANT4 + RPCSIM simulation**

RPCSIM tuned to reproduce performance in 'clean' regions Reasonable agreement with data observed

Data appear to be of very high quality

Backup Slides

Simulation Strategy

With muons – tune a, T, (d_{cut}) , and Q_0 With positrons – tune d_{cut} Pions – no additional tuning

RPCSIM Parameters

Distance d_{cut}

Distance under which there can be only one avalanche (one point of a pair of points randomly discarded if closer than d_{cut})

Charge Q₀

Shift applied to charge distribution to accommodate possible differences in the operating point of RPCs

Slope a

Slope of exponential decrease of charge induced in the readout plane

Threshold T

Threshold applied to the charge on a given pad to register a hit