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« The most recent versions of KPiX are versions 7,
8, 9 and A.

« You will see these referred to as KPiX-7, KPiX-A
and so on.

KPiX-7 was released in 2008 with 64 channels.

KPiX-8 was released in 2009 with 256 channels.

KPiX-9 was released in 2010 with 512 channels.

« KPiX-A was released in 2011 with 1024 channels.

o If KPiX-A functions properly, it will be the final
version.

Underside of KPiX-9
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KPiIX Features O

. KPiX is largely motivated by Silicon Detector (SiD) for the International Linear Collider
(ILC).

. KPiX operates to read, process and output small charge signals.

« External control signals are used for control of system clock, reset and issuing
commands. All other controls are internal, including triggers.

. External triggering is available.

. Power pulsing allows for ~40 mW power consumption for a full-sized chip.

« Dynamic range switching capability allows gain to decrease when signals exceed ~400
fC, increasing signal range to 10 pC.

« Noise floor of 0.15 fC, 1000 electrons. For reference: a MIP is 25000 electrons.
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Charge Amplifier

O

OREGON
- Signal at input is converted to voltage pC-Reset Contral_| Acauletion Memors
signal at output of amplifier with gain ]JI B
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Data Acquisition 9.

. Signal from charge amplifier is amplified,
shaped and compared to threshold.

AVDD

. If signal is above threshold, then data
L . Storage Cap
acquisition cycle begins. | of 4
: : . 1pF
« Nearest neighbor triggering is selectable for
tracking. '
| | | 100 f\‘%f\j_/a ADG and
. Signal is passed through a low-pass filter to be o » Memory
held on one of four storage capacitors. £ j
. Tlme_ t_Jetween peglnnl_ng and end of Shaper Time Latch
acquisition cycle is precisely controlled. Amplifier Reset | Storage
Block &
. . . . Trigger
. Second signal is generated to indicate event I =
time and is sent to memory block. Trigger Threshold
. Contral of Amplifier Block

. Resets are generated, allowing four events to
be fed to storage block each storage cycle.
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ADC and Memory

O
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. For each channel, signal on the storage

capacitor is digitized and subsequently stored in

memory.

. Signals are digitized using the Wilkinson
method. Current source has selectable value

which is referred to as the “front-end” current.

« ADC has 13 bits of resolution.
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KPiX Example Calibration  .2.
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. Above is an example of an ADC calibration
featuring dynamic range switching.

. The second plot is an ADC histogram, each
event was force triggered.

_ _ _ _ _ . Atypical gain (normal) is 5 ADC/fC
« Precise calibration signals are delivered to the

charge amplifier. Each signal is converted to an

. Sigma is ~1 ADC which gives 0.2 fC noise
ADC count.

« Notice the range switch at ~500 fC.
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KPiX-8 Load Measurements .9©..

« When bonded to Si wafer, a Noise versus Capacitance
capacitive load on the order of T
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KPI1X-9 Calibration 0.
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« All channels of KPiX-9 are calibrated, « Noise was measured for all channels
the gains are histogrammed above. using force triggers.
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KPiX-A Calibration Summary .2.
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« All channels of KPiX-A are calibrated. « Force triggers are histogrammed and
. Gain vs. channel appears in top plot. fit witha Gaussian.
« y-intercept vs. channel appears in . The bottom plot displays sigma of
bottom plot. Gaussian fit for each channel.
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KPIX-A Noise Summary 5y
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KPiX-Noise Summary (2) .2.

. Residuals from fits of all (h)AIl Pixels Residuals [fC]
the channels are _ Entries 1025023
histogrammed to the right. z Mean 0.0042
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Fe55 Source and GEM 0.

« 64 channels of a KPiX-7 are
connected to GEM detectors.

« An Feb5 source is positioned over
the GEM-KPiX apparatus.

« A histogram of measured charge
Is presented to the right (for each
channel).

. Note the well-defined spectrum.

. These measurements were
conducted by Seongtae at UTA.
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Summary and Future 9.

« KPiX is designed for use in SiD, but has
applications outside of ILC.

« We are currently conducting tests of the 10™
KPiX prototype.

. As demonstrated, tests are proving successful.
« Successful bump bonding to Si wafer will allow
tests to be conducted on KPiX with capacitive

load on all channels.

« Beam tests at SLAC could also be in the near
future.
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