# Test of sensor-plane prototypes in an electron beam

O.Novgorodova, K.Afanaciev, J.Aguilar, H.Henschel, M.Idzik, A.Ignatenko, Sz.Kulis, S.Kollowa, W.Lange, I.Levy, W.Lohmann, S.Schuwalow













### Outlook



- > Forward Calorimeters prototypes
- > Lab measurements
- > Test beam DESY HH 2010
- > Data analysis
  - S/N, CCE
  - Temperature dependence
  - Edge investigations
- > Radiation hardness
- > Conclusions and plans



### **Forward Calorimeter sensors**



- **Precise luminosity measurement**
- Hermeticity electron detection at low polar angles
- Assisting beam tuning (fast feedback of BeamCal data to machine)
- **Challenges:** 
  - radiation hardness (BeamCal)
  - fast readout (both)
- 30 Layers
  - Tungsten absorber:

BeamCal

Sensor layers ->GaAs or Di (BeamCal),

Si (LumiCal)





Standard p+ on n silicon sensor, 320 µm thick 30 deg tiles, contains 4 sectors (each 64 pads)

BeamCal sensor prototype

GaAs plate with Al metallization, 500 µm thick 45 deg tiles, segmented into 12 rings, ~5x5 mm<sup>2</sup> pads



# Prototype description





Cluster 4

**Cluster 2** 

Common read-out board for Si and GaAs sensor plates

GaAs sensor plane (2 clusters were irradiated)

**Every cluster has 8 channels** 

PCB fan-out provides connection between sensor and front-end electronics - ASICs (RC, FET technologies)

Power supply and biasing circuits for transporting signals to ADC Read out by Sampling ADC v1721, CAEN

5 GaAs Sensor Plates were tested in the Lab



Al window Fan Out Sensor R/O Board Al window

## Laboratory measurements







Capacitances measurements with 100V

IV measurements 0-350V

#### BeamCal:

- Capacitances are stable ~10pF
- > Leakage current ~200nA
- Working HV = -60 V

#### LumiCal:

- Capacitances: 8-25 pF at 100V
- Depletion voltage ~42 V
- Leakage current ~few nA



# Signal processing









- Signal and pedestal were integrated in respect to base line
- Window optimization defines the S/N ratio and signal collection efficiency
- Pedestal, calculated before signal comes, has smaller sigma



### CCE set-up





Move DUT under <sup>90</sup>Sr for CCE measurements of each pad



Set-up has to be compact for higher collected statistics.

Large multiple scattering due to material amount (500  $\mu$ m GaAs, PCB...)



### Signal vs. bias voltage





- > Central pad of cluster 4
- > ~100 V saturation
- > -60 V is near to saturation

#### **GEANT** simulation:

- > E<sub>dep</sub> = 0.35MeV
- > For 500  $\mu$ m GaAs = 83900 e-h pairs
- > CCE saturation ~42%



# Test beam - Hamburg (DESY II)





### Base line vs. temperature





- Temperature dependence was measured over whole test beam
- Mean temperature vs. mean baseline
- In 2 degrees 9 ADC channels for baseline
- Files were collected~15min
- In ns range of integration window should not affect signal integration



### BeamCal S/N and CCE



| CI/<br>Ch | Ped.<br>σ | Land.<br>MPV | Spectr.<br>ped. σ | S/N   | CCE<br>% | CI/Ch | Ped.<br>σ | Land.<br>MPV | Spectr.<br>ped. σ | S/N   | CCE<br>% |
|-----------|-----------|--------------|-------------------|-------|----------|-------|-----------|--------------|-------------------|-------|----------|
| 2/0       | 17,9      | 362,4        | 24,4              | 20,25 | 33,6     | 4/0   | 17,6      | 357,4        | 23,7              | 20,31 | 33,4     |
| 2/1       | 16,4      | 337,7        | 25,8              | 20,59 | 31,7     | 4/1   | 16,5      | 353,8        | 20,6              | 21,44 | 32,1     |
| 2/2       | 16,9      | 371,4        | 22,8              | 21,98 | 34,8     | 4/2   | 14,6      | 353,8        | 22,3              | 24,23 | 32,5     |
| 2/3       | 15,9      | 360,7        | 25,6              | 22,69 | 33,0     | 4/3   | 14,2      | 371,2        | 18,8              | 26,14 | 33,8     |
| 2/4       | 12,7      | 172,8        | 16,9              | 13,61 | 34,7     | 4/4   | 8,9       | 174,3        | 13,3              | 19,58 | 34,7     |
| 2/5       | 19,6      | 382,0        | 32,1              | 19,49 | 35,4     | 4/5   | 9,3       | 167,9        | 14,0              | 18,05 | 33,0     |
| 2/6       | 13,3      | 165,4        | 19,4              | 12,44 | 34,4     | 4/6   | 10,3      | 168,8        | 15,4              | 16,39 | 33,6     |
| 2/7       | 15,5      | 363,8        | 21,2              | 23,47 | 33,7     | 4/7   | 9,9       | 169,0        | 13,6              | 17,07 | 33,7     |

- > Two clusters were irradiated (8 pads each)
- > Two different front-end electronics RC, FET
- > S/N ratio: RC ~ 20 26, FET ~13 20  $S/N = \frac{MPV_{Landau} MPV_{Ped}}{\sigma_{Ped}}$

> CCE ~33% at -60V.



# Charge collection uniformity









- Synchronization of telescope and DUT
- > Telescope alignment was checked
  - 3 Telescope planes were fitted
  - Residual ~10 μm
- Pad structure corresponds 5x5mm²
  + gap ~200 μm
- 4 independent pads areas show identical charge collection
- high efficiency of charge collection

### LumiCal results





Signal size spectrum for 4.5 GeV electrons fits very well to Landau distribution S/R ~ 19



- Combined events from LumiCal DAQ and Zeus telescope DAQ
- > LumiCal sensor structure is reflected on reconstructed tracks



### 4 pads edge





- > ~ 2 millions events
- > ~ 70% selected with one track in telescope
- Tracks are reconstructed from 3 telescope planes with linear fit

- > 50 μm stripes
- > Area taken to investigate only one edge
- > Spectra for each stripe were collected
- Mean values and MPV of obtained spectra were used



# Pads gap investigations





- Mean value of signal in stripes
  between 2 pads is presented. Blue
  channel 0, red channel 1.
- On the border signal is slightly increasing

- Signal sum (MPV) in stripes between 2 pads is presented.
- Signal sum (MPV) of two pads shows decrease on 10%



### Radiation hardness







- Test beam in Darmstadt, S-DALINAC
- > An electron beam of up to 50 nA
- irradiation with doses of up to 1.5MGy
- Leakage current increased in factor of two at room temperature
- > The CCE drops fast at lower absorbed doses.
- At higher doses the CCE value saturates.
- MIP signals separation was observed up to 600 kGy



### Conclusions



- > Two sensor planes were tested at the 4,5GeV electron beam in 2010.
- > Both detectors show perfect performance, S/N ~20
- Functionality of the chain: front-end + fan-out + sensors, positively verified on test beam
- > BeamCal prototype:
  - Operation at room temperature
  - Low leakage current ~200nA
  - CCE up to 50% in the HV saturation
  - Radiation hardness up to 1.5MGy
  - Spectra uniformity in central part of pads
  - ~10% loss of signals in gaps between pads
- > Tight schedule for 2011 year
  - lot of works already done prototype of Multichannel ADC SoC fully functional, under tests,
  - Integration of ADC with front-end and sensor in progress, next test beam will be soon.