ATF2 Instrumentation

S.T. Boogert

John Adams Institute at Royal Holloway on behalf of the ATF2 international collaboration (lots of material taken from SLAC ATF2 meeting Jan 2011 ,
http://ilcagenda.linearcollider.org/conferenceDisplay.py? confld=4904)
Replacing N.Terunuma/T. Tauchi who cannot attend Rushed talk, sorry if some(thing/body)is mis(represented/ing)

Outline

- Cavity Beam position monitor systems (KEK/SLAC/JAI)
- Interaction point beam size monitor (KEK/Tokyo)
- Optical transition radiation monitor (KEK/SLAC/IFIC)
- Laser wire system (JAI RHUL/Oxford)
- Feedback on nanosecond time scales
- Background monitoring (LLR)
- Interaction point BPMs
- High Q (KEK/KNU)
- Low Q (KEK/KNU)

Goal I : 35 nm spot
 Goal 2 : nm level stabilisation

- Tilt monitor (Tohoku)
- Straightness, alignment monitoring (Notre Dame)

ATF2 Overview (instrumentation)

- Very dense with instrumentation
- 2 independent emittance diagnostic systems (3 axis wires, OTR)
- 2 independent IP systems (BPMs, IPBSM)

Cavity position monitor system

S-band BPMs (movers)

Strip line/Cavity BPMs (rigid)

IP calibration 201 10202

Boogert/Lyapin/Kim/Cullinan
bpmAllLog 20110202035952

IP calibration 201 10202

Boogert/Lyapin/Kim/Cullinan
bpmAllLog 20110202035952

End of week 201I0204 (030908)

Boogert/Lyapin/Kim/Cullinan
bpmAllLog 20110204030255

IP region BPM installation

T. Smith/YI Kim/Y Honda

- Honda-san installed
- 2 BPM, IPBPM block
- T. Smith installed
- Mixdown electronics
- 5.7 GHz source for x
- New SLAC I6 bit, I20 MHz digiziters
- Excellent linearity
- Low noise

IPBPM waveform processing

Boogert/Lyapin/Kim/Cullinan

- Filter width of
0.03, so 33 samples
- IPBPM decay time ~ 10 samples
- Increase filter to 0.1 and recalibrate
- More important with saturation (see IP2 y)

Reference

Grey box : filter width Red line : Last un-staturated Green line : sample point Cyan line :Amplitude (DDC)

Saturation example (IP2 y). Nominal sample point (green) disturbed by saturation so sample at new point I/BW later (reddashed) extrapolate back (green)

Interaction point beam size

U of Tokyo

- Laser interference system
- 5 different laser beam separations
- Observe modulation of Compton rate
- Problematic

- Backgrounds in detector
- Mode switching
- Laser power/timing ... (ok always an issue)

2-8 degree mode

U of Tokyo

- Modulation clearly observed
- Knob scans conducted
- Optimise beam size down to $\sim 300-400 \mathrm{~nm}$

30 degree mode

- Signal not observed in 30 degree mode
- Backgrounds, other drifts
- Collision geometry
- Beam size itself

Optics scans with IPBSM

KEK/Okugi

- Sextupole strength scans, to check the chromaticity correction
- SD4FF, SFIFF, SD0FF

Emittance measurement

- Wire scanners
- From old ATF extraction line
- Relatively slow and projected measurement (coupling etc)
- Installed new multi OTR system (SLAC/IFIC)
- Fast measurement
- Can extract full emittance and coupling in few minutes

OTR station

Mechanical design

Installed on beam-line

New targets

Beam measurement

SLAC/IFIC

Emittance measurement stability

G.White

FONT

FONT summary

- Improvements to FONT5 board
- Latency 44 ns (irreducible)
- Electronics 87 ns
- BPM mover calibration
- Investigation of bunch to bunch correlations

Bunch 1

Laser-wire

- Difficult commissioning due to $\sim 25 m$ Compton transport
- Fixed using alignment laser and 2 wire scanners in drift around LWIP
- Best results thus far ~8 micron
- Previously ~4 micron

$19.2 \pm 0.2 \mu \mathrm{~m}$

$8.1 \pm 0.1 \mu \mathrm{~m}$

Summary

- Cavity BPM system performing well around 200 (20 dB) and 50 (no attenuators) nm
- Commissioned new OTR system
- Re-commissioned laser-wire system, aim to reach I micrometer
- IPBSM used by tuning operators but problems using 30 degree mode
- Other diagnostics development proceeding well (not discussed in this talk)
- Difficult times for ATF/ATF2 firstly because of a modulator fire and more importantly the Sendai earthquake.

