Associated b-Higgs Production at the LHC

March, 2011
S. Dawson BNL

Dawson \& Jackson, Phy. Rev. D77, 015019 (2008)
Dawson, Jackson, Jaiswal, arXiv:1103.xxxx
Dawson, Jaiswal, arXiv:1002.2672

SM Production Mechanisms at LHC

Bands show error estimate (scale + PDF)

All important channels calculated to NLO or NNLO

Production with b's very small in SM

[LHC Higgs Cross Section Working Group]

Higgs in the MSSM

$>$ MSSM has 2 Higgs doublets: H_{d} and H_{u}

$$
H_{d}=\binom{\varphi_{d}^{+}}{\varphi_{d}^{0}} \quad H_{u}=\binom{\phi_{u}^{0}}{-\phi_{u}^{-}} \quad \begin{array}{ll}
\phi_{d}^{0}=\frac{1}{\sqrt{2}}\left(v_{1}+h_{d}^{0}\right) \\
\phi_{u}^{0}=\frac{1}{\sqrt{2}}\left(v_{2}+h_{u}^{0}\right)
\end{array} \quad \tan \beta=\mathrm{v}_{1} / \mathrm{v}_{2}
$$

$>$ Physical CP-Even Higgs bosons

$$
\binom{h^{0}}{H^{0}}=\left(\begin{array}{cc}
c_{\alpha} & -s_{\alpha} \\
s_{\alpha} & c_{\alpha}
\end{array}\right)\binom{h_{u}{ }^{0}}{h_{d}{ }^{0}}
$$

$>$ Pseudoscalar, A^{0}, and two charged Higgs, $\mathrm{H}^{ \pm}$
Higgs coupling to b's enhanced for large $\tan \beta$

Higgs + b Production

5 Flavor number PDF scheme

4 Flavor number PDF scheme

Schemes represent different orderings of perturbation theory

NLO QCD Corrections well known in both schemes

$\mathrm{CMS}: \mathrm{h} \rightarrow \tau^{+} \tau^{-}$

ATLAS Limit: $\mathrm{h} \rightarrow \tau^{+} \tau^{-}$

Higgs Couplings to Fermions

- At tree level, H_{d} couples to charge $-1 / 3$ quarks, and H_{u} couples to charge $2 / 3$ quarks

$$
L=-\lambda_{b} \bar{\psi}_{L} H_{d} b_{R}-\lambda_{t} \bar{\psi}_{L} H_{u} t_{R}+h c \quad \psi_{L}=\binom{t_{L}}{b_{L}}
$$

- Since up and down quark sectors are diagonalized independently, Higgs interactions are flavor diagonal
- Trilinear couplings couple both Higgs to charge $-1 / 3$ and charge $2 / 3$ squarks
$L=\widetilde{t}_{L}^{*} \lambda_{t}\left(A_{t} H_{u}-\mu^{*} H_{d}\right) \widetilde{t}_{R}+\widetilde{b}_{L}^{*} \lambda_{b}\left(A_{b} H_{d}-\mu\left(H_{u}\right) \tilde{b}_{R}+\right.$ h.c.
Couples "wrong" Higgs

Effective Lagrangian Approach

$>$ No tree level $\mathrm{H}_{\mathrm{u}} \mathrm{b} \overline{\mathrm{b}}$ coupling in MSSM, but it arises at 1loop

$$
L_{\text {eff }}=-\lambda_{b} \bar{b}_{R}\left(\phi_{d}^{0}+\frac{\Delta m_{b}}{\tan \beta} \phi_{u}^{0^{*}}\right) b_{L}+h c
$$

$>$ At tree level, $\mathrm{m}_{\mathrm{b}}=\lambda_{\mathrm{b}} \mathrm{V}_{1} /{ }^{2} 2$
\rightarrow At one loop: $\mathrm{m}_{\mathrm{b}} \equiv \lambda_{\mathrm{b}} \mathrm{V}_{1}\left(1+\Delta \mathrm{m}_{\mathrm{b}}\right) / \sqrt{ } 2$
> Yukawa coupling shifted:

$$
L_{e f f}=\frac{m_{b}}{v_{S M}}\left(\frac{1}{1+\Delta m_{b}}\right)\left(-\frac{\sin \alpha}{\cos \beta}\right)\left(1-\frac{\Delta m_{b}}{\tan \beta \tan \alpha}\right) \bar{b} b h^{0}
$$

Define Effective Yukawa Couplings

$$
\Delta m_{b}=\frac{2 \alpha_{s}}{3 \pi} m_{\widetilde{g}} \mu I\left(m_{\widetilde{b_{1}}}, m_{\widetilde{b_{2}}}, m_{\widetilde{g}}\right)
$$

$$
\text { Assumes } \mathrm{M}_{\mathrm{h}} \ll \mathrm{M}_{\mathrm{SUSY}}
$$

Effective Lagrangian approach neglects momentum dependence of 3-pt function

Calculate SUSY QCD Corrections to $\mathrm{bg} \rightarrow \mathrm{bh}$

- Approach 1: "Improved Born Approximation"

$$
g_{h b b} \equiv \frac{m_{b}}{v_{S M}}\left(\frac{1}{1+\Delta m_{b}}\right)\left(-\frac{\sin \alpha}{\cos \beta}\right)\left(1-\frac{\Delta m_{b}}{\tan \beta \tan \alpha}\right)
$$

$$
\sigma_{I B A}=\left(\frac{g_{h b b}}{g_{h b b}^{S M}}\right)^{2} \sigma_{L O}
$$

- Approach 2: $\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$ NLO calculation
- Use $g_{\text {hbb }}$ as above, so subtract off double counting
- Include all contributions from squark/gluino loops

Many contributions not included in IBA

Analytic Results

- New calculation includes:
- $\mathrm{m}_{\mathrm{b}} \tan \beta$ enhanced terms
- Analytic results for small and large b -squark mixing in large $\mathrm{M}_{\text {Susy }}$ limit
- Example: Large mixing, b-squarks almost degenerate, $\sin 2 \theta_{b} \sim 1$

$$
\left\lvert\, A(\left.b g \rightarrow b h\right|^{2}=\left\lvert\, A(\left.b g \rightarrow b h\right|_{\text {IBA }}{ }^{2}(\underbrace{\left.1+2\left(\frac{\delta g_{b b h}^{(2)}}{g_{b b h}}\right)\right)+2 \frac{M_{h}^{2}}{M_{s}^{2}}} \delta \kappa\right.\right.
$$

Corrections to IBA: $\mathrm{O}\left(1 / \mathrm{Msusy}^{2}\right)$

- $\delta \kappa$ term not rescaling of LO
\% deviation from IBA

Deviations from IBA only for light ($\sim 200-400 \mathrm{GeV}$) squarks and gluinos (excluded by LHC)

Dawson, Jackson, Jaiswal arXiv:1103.xxxx [hep-ph]

PDF/Scale Uncertainties

Scale variation $\sim 2 \%$, PDF set variation $\sim 5 \%$

Dawson, Jackson, Jaiswal arXiv:1103.xxxx [hep-ph]

Standard Model: EW Corrections to $\mathrm{pp} \rightarrow \mathrm{b} \mathrm{h}$

$$
\sigma(p p \rightarrow b h)=\sigma_{0}\left(1+\Delta_{Q C D}+\Delta_{E W}+\Delta_{S Q C D}\right)
$$

For $\mathrm{M}_{\mathrm{h}} \sim 400 \mathrm{GeV}$ corrections 2-4\%

IBA captures weak corrections accurately

Conclusions

- For heavy squarks and gluinos, SQCD loop effects well approximated by effective Lagrangian approach
- SQCD effects are large! But contained in $\Delta \mathrm{m}_{\mathrm{b}}$
- Scale/PDF uncertainties ~ 2-5\%

