
Associated b-Higgs Production at the LHC

March, 2011 S. Dawson BNL

Dawson & Jackson, Phy. Rev. D77, 015019 (2008) Dawson, Jackson, Jaiswal, arXiv:1103.xxxx Dawson, Jaiswal, arXiv:1002.2672

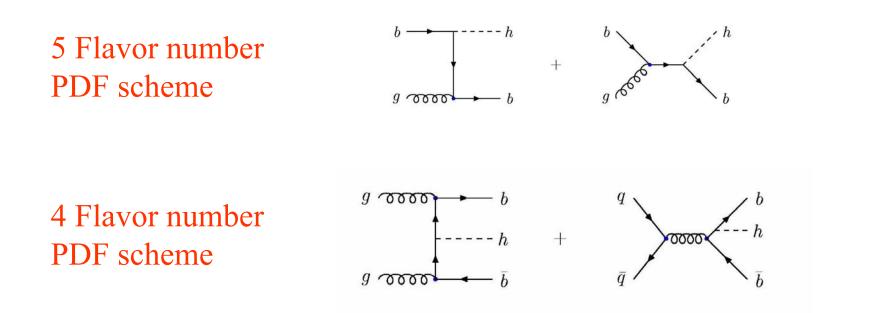
SM Production Mechanisms at LHC

[LHC Higgs Cross Section Working Group]

Higgs in the MSSM

 \succ MSSM has 2 Higgs doublets: H_d and H_u

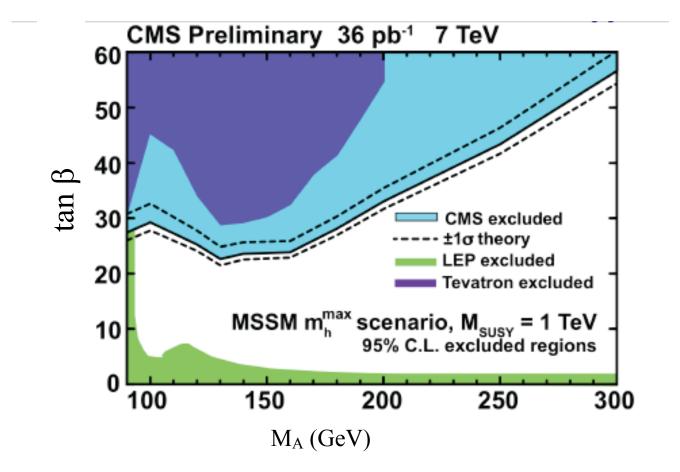
 $\tan\beta = v_1/v_2$

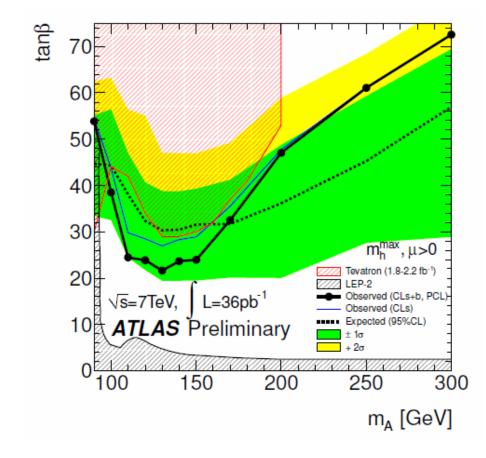

Physical CP-Even Higgs bosons

$$\begin{pmatrix} h^{0} \\ H^{0} \end{pmatrix} = \begin{pmatrix} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} h_{u}^{0} \\ h_{d}^{0} \end{pmatrix}$$

≻Pseudoscalar, A⁰, and two charged Higgs, H[±]

Higgs coupling to b's enhanced for large tan β


Higgs + b Production


Schemes represent different orderings of perturbation theory

NLO QCD Corrections well known in both schemes

CMS: $h \rightarrow \tau^+ \tau^-$

ATLAS Limit: $h \rightarrow \tau^+ \tau^-$

Higgs Couplings to Fermions

• At tree level, H_d couples to charge -1/3 quarks, and H_u couples to charge 2/3 quarks

$$L = -\lambda_b \overline{\psi}_L H_d b_R - \lambda_t \overline{\psi}_L H_u t_R + hc \qquad \psi_L = \begin{pmatrix} t_L \\ b_L \end{pmatrix}$$

- Since up and down quark sectors are diagonalized independently, Higgs interactions are flavor diagonal
- Trilinear couplings couple both Higgs to charge -1/3 and charge 2/3 squarks

$$L = \widetilde{t}_L^* \lambda_t \left(A_t H_u - \mu^* H_d \right) \widetilde{t}_R + \widetilde{b}_L^* \lambda_b \left(A_b H_d - \mu H_u \right) \widetilde{b}_R + h.c.$$

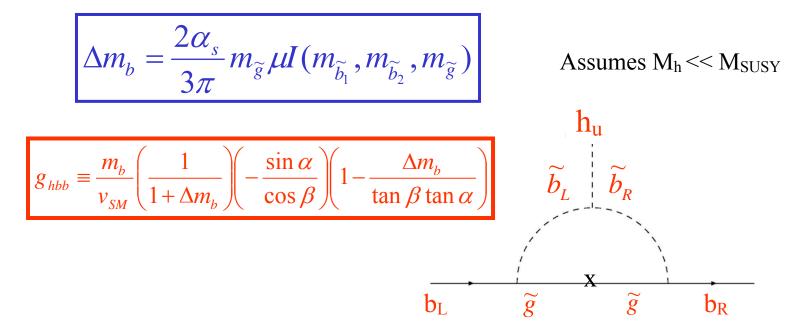
Couples "wrong" Higgs

()

Effective Lagrangian Approach

No tree level $H_u b \overline{b}$ coupling in MSSM, but it arises at 1loop

$$L_{eff} = -\lambda_b \overline{b}_R \left(\phi_d^0 + \frac{\Delta m_b}{\tan \beta} \phi_u^{0*} \right) b_L + hc$$

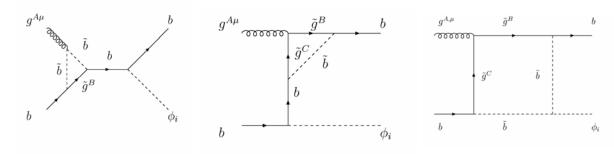

> At tree level, $m_b = \lambda_b v_1 / \sqrt{2}$

At one loop: $m_b \equiv \lambda_b v_1 (1 + \Delta m_b) / \sqrt{2}$

Yukawa coupling shifted:

$$L_{eff} = \frac{m_b}{v_{SM}} \left(\frac{1}{1 + \Delta m_b}\right) \left(-\frac{\sin \alpha}{\cos \beta}\right) \left(1 - \frac{\Delta m_b}{\tan \beta \tan \alpha}\right) \overline{b} \, b h^0$$

Define Effective Yukawa Couplings


Effective Lagrangian approach neglects momentum dependence of 3-pt function

Calculate SUSY QCD Corrections to bg→bh

• Approach 1: "Improved Born Approximation"

$$g_{hbb} = \frac{m_b}{v_{SM}} \left(\frac{1}{1 + \Delta m_b}\right) \left(-\frac{\sin \alpha}{\cos \beta}\right) \left(1 - \frac{\Delta m_b}{\tan \beta \tan \alpha}\right) \qquad \sigma_{IBA} = \left(\frac{g_{hbb}}{g_{hbb}^{SM}}\right)^2 \sigma_{LO}$$

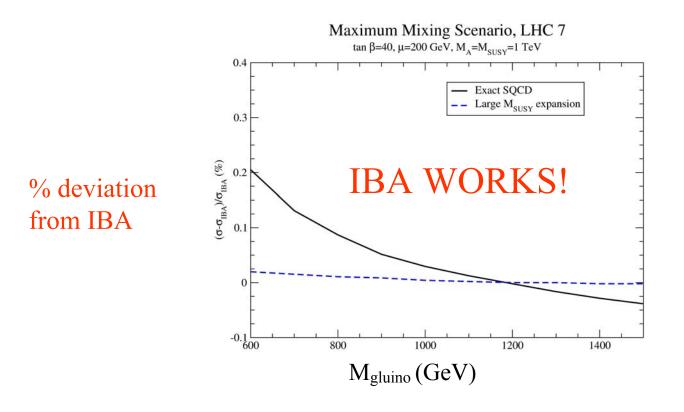
- Approach 2: $O(\alpha_s^2)$ NLO calculation
 - Use g_{hbb} as above, so subtract off double counting
 - Include all contributions from squark/gluino loops

Many contributions not included in IBA

h

 ϕ_i

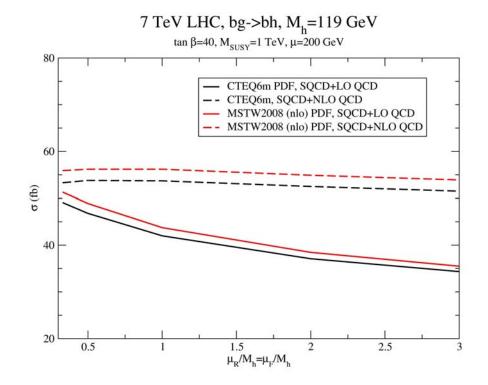
h


Analytic Results

- New calculation includes:
 - $-m_b tan \beta$ enhanced terms
 - Analytic results for small and large b-squark mixing in large M_{SUSY} limit
 - Example: Large mixing, b-squarks almost degenerate, sin $2\theta_b \sim 1$

$$\left|A(bg \rightarrow bh)\right|^{2} = \left|A(bg \rightarrow bh)\right|_{IBA}^{2} \left(1 + 2\left(\frac{\delta g_{bbh}^{(2)}}{g_{bbh}}\right)\right) + 2\frac{M_{h}^{2}}{M_{s}^{2}}\delta\kappa$$

Corrections to IBA: $O(1/M_{SUSY}^2)$


 $-\delta\kappa$ term not rescaling of LO

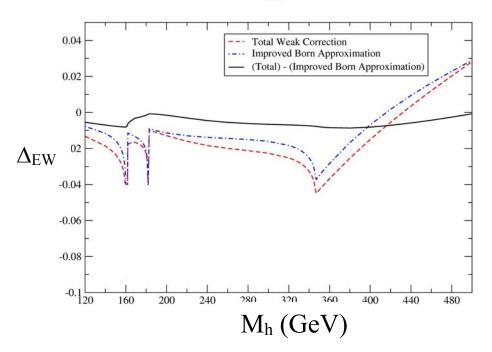
Deviations from IBA only for light (~200 -400 GeV) squarks and gluinos (excluded by LHC)

Dawson, Jackson, Jaiswal arXiv:1103.xxxx [hep-ph]

PDF/Scale Uncertainties

Scale variation $\sim 2\%$, PDF set variation $\sim 5\%$

Dawson, Jackson, Jaiswal arXiv:1103.xxxx [hep-ph]


Standard Model: EW Corrections to $pp \rightarrow b h$

$$\sigma(pp \to bh) = \sigma_0 \left(1 + \Delta_{QCD} + \Delta_{EW} + \Delta_{SQCD} \right)$$

LHC ($E_{CM} = 7 \text{ TeV}$)

For $M_h \sim 400 \text{ GeV}$ corrections 2-4%

IBA captures weak corrections accurately

Dawson, Jaiswal [arXiv:1002.2672]

Conclusions

- For heavy squarks and gluinos, SQCD loop effects well approximated by effective Lagrangian approach
 - SQCD effects are large! But contained in Δm_b
- Scale/PDF uncertainties $\sim 2-5\%$