# Top pair and single top cross sections at Tevatron and LHC energies

Nikolaos Kidonakis (Kennesaw State University)

- $t\bar{t}$  and single top production channels
- Higher-order two-loop corrections
- $t\bar{t}$  cross section at Tevatron and LHC
- Top quark  $p_T$  and Y distribution at Tevatron and LHC
- *t*-channel production at Tevatron and LHC
- *s*-channel production at Tevatron and LHC
- Associated production of a top with a  $W^-$  or  $H^-$

# Partonic processes at LO

#### **Top-antitop pair production**

•  $q\bar{q} \rightarrow t\bar{t}$ 

dominant at Tevatron





### Single top quark production

• *t* channel: 
$$qb \rightarrow q't$$
 and  $\bar{q}b \rightarrow \bar{q}'t$ 

dominant at Tevatron and LHC

• s channel: 
$$q\bar{q}' \rightarrow \bar{b}t$$

small at Tevatron and LHC



• associated 
$$tW$$
 production:  $bg \rightarrow tW^-$ 

very small at Tevatron, significant at LHC

#### Related process: $bg \rightarrow tH^-$



# **Higher-order corrections**

- QCD corrections significant for top pair and single top quark production
- NLO corrections fully known
- Soft-gluon corrections from incomplete cancellations of infrared divergences between virtual diagrams and real diagrams with soft (low-energy) gluons

**Soft corrections**  $\left[\frac{\ln^k(s_4/m^2)}{s_4}\right]_+$  with  $k \le 2n - 1$  and  $s_4$  distance from threshold

- Soft-gluon corrections are dominant near threshold Resum (exponentiate) these soft corrections
- At NLL accuracy requires one-loop calculations in the eikonal approximation New results at NNLL-two-loop calculations completed Approximate NNLO cross section from expansion of resummed cross section
- Essential ingredient: two-loop soft anomalous dimension
- **Allows NNLL resummation**

# **Resummed cross section**

Resummation follows from factorization properties of the cross section - performed in moment space

Use RGE to evolve function associated with soft-gluon emission

*H*: hard-scattering function *S*: soft-gluon function

$$\hat{\sigma}^{res}(N) = \exp\left[\sum_{i} E_{i}(N)\right] \exp\left[\sum_{j} E_{j}'(N)\right] \operatorname{tr}\left\{H\left(\alpha_{s}\right)\right\}$$
$$\times \exp\left[\int_{\sqrt{s}}^{\sqrt{s}/\tilde{N}} \frac{d\mu}{\mu} \Gamma_{S}^{\dagger}\left(\alpha_{s}(\mu)\right)\right] S\left(\alpha_{s}\left(\frac{\sqrt{s}}{\tilde{N}}\right)\right) \exp\left[\int_{\sqrt{s}}^{\sqrt{s}/\tilde{N}} \frac{d\mu}{\mu} \Gamma_{S}\left(\alpha_{s}(\mu)\right)\right]\right\}$$

where

**Γ***s* is the soft anomalous dimension - a matrix in color space and a function of kinematical invariants *s*, *t*, *u* Calculate **Γ***s* in eikonal approximation

Calculation is at differential cross section level

kinematics refer to partonic threshold (not just absolute threshold)

# **Eikonal approximation**

Feynman rules for soft gluon emission simplify

 $\bar{u}(p)\left(-ig_{s}T_{F}^{c}\right)\gamma^{\mu}\frac{i(\not p+k+m)}{(p+k)^{2}-m^{2}+i\epsilon}\rightarrow\bar{u}(p)g_{s}T_{F}^{c}\gamma^{\mu}\frac{\not p+m}{2p\cdot k+i\epsilon}=\bar{u}(p)g_{s}T_{F}^{c}\frac{v^{\mu}}{v\cdot k+i\epsilon}$ 

with  $p \propto v$ ,  $T_F^c$  generators of SU(3)

Perform calculation in momentum space and Feynman gauge

Complete two-loop results for

• soft (cusp) anomalous dimension for  $e^+e^- 
ightarrow tar{t}$ 

•  $t\bar{t}$  hadroproduction

- *t*-channel single top production
- s-channel single top production
- $bg \rightarrow tW^-$  and  $bg \rightarrow tH^-$

# Soft (cusp) anomalous dimension One-loop eikonal diagrams



$$\Gamma_S = \frac{\alpha_s}{\pi} \Gamma_S^{(1)} + \frac{\alpha_s^2}{\pi^2} \Gamma_S^{(2)} + \cdots$$

The one-loop soft anomalous dimension,  $\Gamma_S^{(1)}$ , can be read off the coefficient of the ultraviolet (UV) pole of the one-loop diagrams

$$\Gamma_S^{(1)} = C_F \left[ -rac{(1+eta^2)}{2eta} \ln\left(rac{1-eta}{1+eta}
ight) - 1 
ight] \quad ext{with} \quad eta = \sqrt{1-rac{4m^2}{s}}$$

# **Two-loop eikonal diagrams**

### **Vertex correction graphs**



Heavy-quark self-energy graphs



# Include counterterms for all graphs and multiply with corresponding color factors Determine two-loop soft anomalous dimension from UV poles of the sum of the graphs

$$\begin{split} \Gamma_{S}^{(2)} &= \frac{K}{2} \, \Gamma_{S}^{(1)} + C_{F} C_{A} M_{\beta} = \frac{K}{2} \, \Gamma_{S}^{(1)} + C_{F} C_{A} \left\{ \frac{1}{2} + \frac{\zeta_{2}}{2} + \frac{1}{2} \ln^{2} \left( \frac{1-\beta}{1+\beta} \right) \\ &- \frac{(1+\beta^{2})^{2}}{8\beta^{2}} \left[ \zeta_{3} + \zeta_{2} \ln \left( \frac{1-\beta}{1+\beta} \right) + \frac{1}{3} \ln^{3} \left( \frac{1-\beta}{1+\beta} \right) + \ln \left( \frac{1-\beta}{1+\beta} \right) \operatorname{Li}_{2} \left( \frac{(1-\beta)^{2}}{(1+\beta)^{2}} \right) - \operatorname{Li}_{3} \left( \frac{(1-\beta)^{2}}{(1+\beta)^{2}} \right) \right] \\ &- \frac{(1+\beta^{2})}{4\beta} \left[ \zeta_{2} - \zeta_{2} \ln \left( \frac{1-\beta}{1+\beta} \right) + \ln^{2} \left( \frac{1-\beta}{1+\beta} \right) - \frac{1}{3} \ln^{3} \left( \frac{1-\beta}{1+\beta} \right) + 2 \ln \left( \frac{1-\beta}{1+\beta} \right) \ln \left( \frac{(1+\beta)^{2}}{4\beta} \right) \\ &- \operatorname{Li}_{2} \left( \frac{(1-\beta)^{2}}{(1+\beta)^{2}} \right) \right] \right\} \end{split}$$

where  $K = C_A(67/18 - \zeta_2) - 5n_f/9$ 

N. Kidonakis, Phys. Rev. Lett. 102, 232003 (2009), arXiv:0903.2561 [hep-ph]

 $\Gamma_{S}^{(2)}$  vanishes at  $\beta = 0$ , the threshold limit, and diverges at  $\beta = 1$ , the massless limit

If one quark is massless and one is massive

$$\Gamma_S^{(2)} = \frac{K}{2} \Gamma_S^{(1)} + C_F C_A \frac{(1-\zeta_3)}{4}$$

**QCD processes:** Color structure gets more complicated with more than two colored partons in the process - Cusp anomalous dimension an essential component of other calculations

#### **Top-antitop production in hadron colliders**

The soft anomalous dimension matrix for  $q\bar{q} \rightarrow t\bar{t}$  is

$$\Gamma_{Sq\bar{q}} = \begin{bmatrix} \Gamma_{q\bar{q}\,11} & \Gamma_{q\bar{q}\,12} \\ \Gamma_{q\bar{q}\,21} & \Gamma_{q\bar{q}\,22} \end{bmatrix}$$

At one loop

$$\Gamma_{q\bar{q}\,11}^{(1)} = -C_F \left[ L_\beta + 1 \right] \qquad \Gamma_{q\bar{q}\,21}^{(1)} = 2\ln\left(\frac{u_1}{t_1}\right) \qquad \Gamma_{q\bar{q}\,12}^{(1)} = \frac{C_F}{C_A} \ln\left(\frac{u_1}{t_1}\right) \\ \Gamma_{q\bar{q}\,22}^{(1)} = C_F \left[ 4\ln\left(\frac{u_1}{t_1}\right) - L_\beta - 1 \right] + \frac{C_A}{2} \left[ -3\ln\left(\frac{u_1}{t_1}\right) + \ln\left(\frac{t_1u_1}{sm^2}\right) + L_\beta \right] \\ 1 + \frac{c_A}{2} = (1 - 6)$$

where  $L_{\beta} = \frac{1+\beta^2}{2\beta} \ln\left(\frac{1-\beta}{1+\beta}\right)$  with  $\beta = \sqrt{1-4m^2/s}$ 

Write the two-loop cusp anomalous dimension as  $\Gamma_S^{(2)} = \frac{K}{2} \Gamma_S^{(1)} + C_F C_A M_{\beta}$ . Then at two loops

$$\Gamma_{q\bar{q}\,11}^{(2)} = \frac{K}{2} \Gamma_{q\bar{q}\,11}^{(1)} + C_F C_A M_\beta \qquad \Gamma_{q\bar{q}\,22}^{(2)} = \frac{K}{2} \Gamma_{q\bar{q}\,22}^{(1)} + C_A \left( C_F - \frac{C_A}{2} \right) M_\beta$$

$$\Gamma_{q\bar{q}\,21}^{(2)} = \frac{K}{2} \Gamma_{q\bar{q}\,21}^{(1)} + C_A N_\beta \ln \left( \frac{u_1}{t_1} \right) \qquad \Gamma_{q\bar{q}\,12}^{(2)} = \frac{K}{2} \Gamma_{q\bar{q}\,12}^{(1)} - \frac{C_F}{2} N_\beta \ln \left( \frac{u_1}{t_1} \right)$$

with  $N_{\beta}$  a subset of terms of  $M_{\beta}$ 

Similar results for  $gg \rightarrow t\bar{t}$  channel N. Kidonakis, Phys. Rev. D 82, 114030 (2010), arXiv:1009.4935 [hep-ph]

### $t\bar{t}$ cross section at the Tevatron



$$\sigma_{t\bar{t}}^{\text{NNLOapprox}}(m_t = 173 \,\text{GeV}, 1.96 \,\text{TeV}) = 7.08^{+0.00}_{-0.24} + 0.020}_{-0.24} \,\text{pb}$$

NNLO approx: 7.8% enhancement over NLO

# $t\bar{t}$ cross section at the LHC



$$\sigma_{t\bar{t}}^{\text{INNLOapprox}}(m_t = 173 \text{ GeV}, 7 \text{ TeV}) = 163^{+7+9}_{-5-9} \text{ pb}$$
  
 $\sigma_{t\bar{t}}^{\text{INNLOapprox}}(m_t = 173 \text{ GeV}, 14 \text{ TeV}) = 920^{+50+33}_{-39-35} \text{ pb}$ 

NNLO approx: enhancement over NLO is 7.6% at 7 TeV; 8.0% at 14 TeV

# Top quark $p_T$ distribution at Tevatron and LHC



# Top quark rapidity distribution at Tevatron and LHC



### Single top quark production - *t* channel

#### Dominant single top production channel at both Tevatron and LHC energies

#### Soft anomalous dimension for *t*-channel single top production

**One loop** 

$$\Gamma_{S11}^{(1)} = C_F \left[ \ln \left( \frac{-t}{s} \right) + \ln \left( \frac{m_t^2 - t}{m_t \sqrt{s}} \right) - \frac{1}{2} \right]$$

$$\Gamma_{S21}^{(1)} = \ln\left(\frac{u(u-m_t^2)}{s(s-m_t^2)}\right) \qquad \Gamma_{S12}^{(1)} = \frac{C_F}{2N_c} \Gamma_{S21}^{(1)}$$

**Two loops** 

$$\Gamma_{S\,11}^{(2)} = \frac{K}{2} \Gamma_{S\,11}^{(1)} + C_F C_A \frac{(1-\zeta_3)}{4}$$

N. Kidonakis, arXiv:1103.2792 [hep-ph]

# Single top quark production at Tevatron and LHC - t channel

Single top Tevatron t-channel NNLO approx (NNLL)  $\mu=m_t$ 

Single top LHC t-channel NNLO approx (NNLL)  $\mu=m_{t}$ 



 $\sigma_{t-\text{channel}}^{\text{NNLOapprox, top}}(m_t = 173 \,\text{GeV}, 1.96 \,\text{TeV}) = 1.04^{+0.00}_{-0.02} \pm 0.06 \,\text{pb}$ 

$$\sigma_{t-\text{channel}}^{\text{NNLOapprox, top}}(m_t = 173 \,\text{GeV}, \, 7 \,\text{TeV}) = 41.7^{+1.6}_{-0.2} \pm 0.8 \,\text{pb}$$

 $\sigma_{t-\text{channel}}^{\text{NNLOapprox, top}}(m_t = 173 \,\text{GeV}, 14 \,\text{TeV}) = 151^{+4}_{-1} \pm 3 \,\text{pb}$ 

NNLO approx: 4% increase at Tevatron; 1% decrease at 7 TeV; 3% decrease at 14 TeV relative to NLO

# Single antitop production at LHC - t channel

Single antitop LHC t-channel NNLO approx (NNLL)  $\mu=m_t$   $120_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$   $100_{0}$  $100_{0}$ 

 $\sigma_{t-\text{channel}}^{\text{NNLOapprox, antitop}}(m_t = 173 \,\text{GeV}, 7 \,\text{TeV}) = 22.5 \pm 0.5^{+0.7}_{-0.9} \,\text{pb}$ 

$$\sigma_{t-\text{channel}}^{\text{NNLOapprox, antitop}}(m_t = 173 \,\text{GeV}, \, 14 \,\text{TeV}) = 92^{+2+2}_{-1-3} \,\text{pb}$$

NNLO approx: 1% decrease at 7 TeV; 3% decrease at 14 TeV relative to NLO

# **Single top quark production -** *s* **channel**



Soft anomalous dimension for *s*-channel single top production

$$\Gamma_{S11}^{(1)} = C_F \left[ \ln \left( \frac{s - m_t^2}{m_t \sqrt{s}} \right) - \frac{1}{2} \right], \qquad \Gamma_{S11}^{(2)} = \frac{K}{2} \Gamma_{S11}^{(1)} + C_F C_A \frac{(1 - \zeta_3)}{4}$$

N. Kidonakis, Phys. Rev. D 81, 054028 (2010), arXiv:1001.5034 [hep-ph]

# Single top quark production at Tevatron and LHC - s channel

Single top Tevatron s-channel NNLO approx (NNLL)  $\mu=m_t$ 

Single top LHC s-channel NNLO approx (NNLL)  $\mu=m_{t}$ 



 $\sigma_{s-\text{channel}}^{\text{NNLOapprox, top}}(m_t = 173 \text{ GeV 1.96 TeV}) = 0.523^{+0.001+0.030}_{-0.005-0.028} \text{ pb}$  $\sigma_{s-\text{channel}}^{\text{NNLOapprox, top}}(m_t = 173 \text{ GeV, 7 TeV}) = 3.17 \pm 0.06^{+0.13}_{-0.10} \text{ pb}$  $\sigma_{s-\text{channel}}^{\text{NNLOapprox, top}}(m_t = 173 \text{ GeV, 14 TeV}) = 7.93 \pm 0.14^{+0.31}_{-0.28} \text{ pb}$ 

NNLO approx: enhancement over NLO is 15% at Tevatron; 13% at LHC

N. Kidonakis, ALCPG11, Eugene, Oregon, March 2011

# Single antitop production at LHC - s channel

Single antitop LHC s-channel NNLO approx (NNLL)  $\mu=m_{+}$ 



 $\sigma_{s-\text{channel}}^{\text{NNLOapprox, antitop}}(m_t = 173 \,\text{GeV}, 7 \,\text{TeV}) = 1.42 \pm 0.01^{+0.06}_{-0.07} \,\text{pb}$ 

$$\sigma_{s-\text{channel}}^{\text{NNLOapprox, antitop}}(m_t = 173 \,\text{GeV}, 14 \,\text{TeV}) = 3.99 \pm 0.05^{+0.14}_{-0.21} \,\text{pb}$$

## Associated production of a top quark with a $W^-$

**Two-loop eikonal diagrams** (+ extra top-quark self-energy graphs)



Soft anomalous dimension for  $bg \rightarrow tW^-$ 

$$\Gamma_{S,tW^{-}}^{(1)} = C_F \left[ \ln \left( \frac{m_t^2 - t}{m_t \sqrt{s}} \right) - \frac{1}{2} \right] + \frac{C_A}{2} \ln \left( \frac{m_t^2 - u}{m_t^2 - t} \right)$$
  
$$\Gamma_{S,tW^{-}}^{(2)} = \frac{K}{2} \Gamma_{S,tW^{-}}^{(1)} + C_F C_A \frac{(1 - \zeta_3)}{4}$$

Same analytical result for  $\Gamma_S$  for  $bg \rightarrow tH^-$ 



$$\sigma_{tW}^{\rm NNLOapprox}(m_t = 173 \, {\rm GeV}, \, 7 \, {\rm TeV}) = 7.8 \pm 0.2^{+0.5}_{-0.6} \, {
m pb}$$

 $\sigma_{tW}^{\rm NNLOapprox}(m_t = 173\,{
m GeV}, 14\,{
m TeV}) = 41.8 \pm 1.0^{+1.5}_{-2.4}~{
m pb}$ 

NNLO approx corrections increase NLO cross section by  $\sim 8\%$ 

Cross section for  $\bar{t}W$  production is identical

## Associated production of a top quark with a charged Higgs



#### NNLO approx corrections increase NLO cross section by $\sim 15$ to $\sim 20\%$

# **Summary**

- NNLL resummation for top quark pair and single top production
- $t\bar{t}$  production cross section
- top quark  $p_T$  and rapidity distributions
- *t*-channel and *s*-channel single top production cross section
- $bg \rightarrow tW^-$  and  $bg \rightarrow tH^-$  at LHC
- NNLO approx corrections for top pair and single top production are significant at Tevatron and LHC