Machine and Detector Integration

Karsten Buesser DESY

ALCPG 2011 Workshop 22. March 2011

High Priority Items

- Together with SiD and CFS
 - Define underground experimental area design
 - Common platform based push-pull detector motion system
 - Detector services and their impact on CFS issues
 - React on site-specific requirements (e.g. mountainous site boundary conditions)
- ILD internal
 - Design 1st-order engineering model of integrated detector
 - Subdetector services and supplies
 - Cable ways, cooling, support structures
 - Integrate with simulation model
 - Detector integration model in EDMS
 - "Synchronisation" with MOKKA
 - Define the required documents and parameters for the DBD
 - Use the Work Breakdown Structure in ILC-EDMS
- Status:
 - The MDI group is working with all its resources on these topics
 - Unfortunately the resources are small....

Experimental Hall (RDR Design)

- Rather large (120m)
- Shafts above experiments
- Not enough space for detector maintenance in parking position
- Unnecessary shielding wall
- No service caverns for detectors

ILD Experimental Hall Design Study

- Shafts not above experiments
- Alcoves provide access to shafts and space for detector maintenance in parking position
- Additional alcoves for detector services
- Potentially less expensive than RDR hall design (smaller volume)

Cavern Size

Radius of experimental hall could go down from ~18 to ~14m

Detector Assembly CMS-Style

- Pre-assembly of large structures on surface
- Sub-assemblies lowered into the experimental hall
- Main parts:
 - three barrel yoke rings; central carries magnet and barrel detectors
 - two yoke endcaps
 - central tracking system (TPC)

Detector in Beam Position

NB: Optimised hall size

Detector Opening - Beam Position

- Option to open the endcap in the beam position for limited access
 - Still under discussion; might not be needed if push-pull concept is taken seriously

Detector Opening - Garage Position

- Alcove needed for allowing access to subdetectors
 - TPC removal needs ~6m opening

Detector Services

Cryogenics for the magnets

Detector Services

- Primary services (on surface)
 - Water chillers
 - HV transformers
 - Diesel and UPS facilities
 - He storage and compressors
 - Gas storage
- Secondary services (underground in alcoves)
 - Cooling water
 - Power supplies
 - Gas mixtures
 - Power converters
 - Cryogenics

- On-board services (move with detector)
 - Electronic containers
- Need an integrated approach to the service needs of ILD and SiD!

Platform Based Detector Motion System

Both detectors on a platform

Alain Hervé, CLIC08 Workshop, 16 October 2008

5

12

Common working assumption

From M. Oriunno @ SiD workshop 2010 after CERN workshop

- Beam height difference between SiD and ILD: 1.6m
 - This results in different floor levels in the underground hall

Barrel yoke modification

- Endcap yoke is more problematic
 - Split endcap design gets complicated

Possible configuration of feet and airpads

- Reducing difference to 0.6m
 - Maybe even less if yoke instrumentation design will be changed

Platform Motion System

With Airpads a simple positive indexing mechanism is possible giving ≈mm precision

Final precision: +-1 mm and +- 0.1 mrad

Platform Motion System

19

ILD Magnetic Stray Fields

- ILD barrel yoke: ~3m of iron to ensure 5mT at 15m from beam pipe
 - main cause of ILD mass: ~15000 tons

Magnetic Field on Steel Floor

CST EM STUDIO 09/08/2010 - 09:30

- Simulation with steel layer on platform
- Large induced magnetic fields! Might have consequence on reinforcements in concrete?

QD0 Support

• M. Joré, H. Yamaoka

QD0 Support Vibration Analysis

- · H. Yamaoka
- Ok for quite site

23

Vibration Issues

CMS Plug finished

Platform Vibration Measurements and Modelling

Sensor position

• M. Oriunno

Platform Vibration Measurements and Modelling

M. Oriunno

Platform Vibration Measurements and Modelling

Integrated Displacement (r.m.s.)

Ground motion amplification of factor ~3

Alternative Detector Assembly Studies (Y. Sugimoto)

An example of Asian mountain site

- ,
- ILC site could be quite different from "plain field" assumptions
- No vertical access shafts (~100m) but horizontal access tunnels (~1km)
- CMS-type assembly of detector needs to be reviewed

Alternative Detector Assembly Studies (Y. Sugimoto)

A possible design of exp-hall

Alternative Detector Assembly Studies (Y. Sugimoto)

Who is doing what in ILD

- Hall design and push-pull system:
 - MDI group: ETH-Zürich, LAL, LLR, DESY, CERN, KEK
 - Collaboration with SiD, GDE-CFS, GDE-BDS and CLIC is natural
- Vibration studies:
 - System: ground platform detector FF magnets
 - Simulations at KEK, LAL and SiD
 - Measurements at CERN (CMS)
- Magnet and Yoke
 - Magnet: CEA, ETH-Zürich, CERN
 - Yoke: DESY
- Subdetector integration mostly done in the R&D collaborations:
 - CALICE, LC-TPC, SILC, FCAL, Vertex
 - Coordination of subdetector design and ILD integration model is not always easy
- Detector models
 - Detailed CAD model of ILD: LAL (M. Joré)
 - Integration model defining workspaces for subdetectors and supplies: DESY (R. Volkenborn)
 - EDMS integration: Work Breakdown Structure, Required Documents: LLR, DESY

Summary

- The list of tasks is long, the time to the DBD/RDR is short:
 - The underground hall design presented in the RDR is not optimal for ILD
 - Common design needed that fits ILC, SiD, ILD and is aligned with the push-pull paradigm
 - Common collaboration between ILD, SiD, ILC-BDS and ILC-CFS started
 - Site-specific modifications need to be taken into account
 - A platform based push-pull motion system seems feasible but needs detailed engineering work
 - Common collaboration between ILD, SiD, ILC-BDS and ILC-CFS started
 - Detector integration is ongoing
 - close collaboration with R&D collaborations
 - CAD/EDMS process is evolving
 - Need to define list of required supporting documents for the WBS
- All tasks are unfortunately resource-driven and not goal-driven
 - The content of the DBD will be defined by the work done, not by the work planned