Cavity Surface Feature Recognition

How to teach a PC to see?

Status Report

\checkmark Motivation
\checkmark Optical Inspection
\checkmark Image Processing
\checkmark First Results
\checkmark Summary

Marc Wenskat
ALCPG-Meeting
Eugene, 19.-23. March 2011

HELMHOLTZ

Motivation

>810 Images per Cavity (without Iris)
> 800 Cavities @ 23.5 MV/m for XFEL
$>$ Huge amount of data!
$>$ Is it possibly to classify patterns to describe the surface?
$>$ How does surface treatment affect the derived cluster-parameters?
> Can we identify and find irregularities / defects automatically?

Optical Inspection

> KEK camera system @ DESY (S. Aderhold, "Optical inspection of SRF cavities at DESY", Proc. of the 14th Workshop on RF Superconductivity, Berlin, Germany 2009)

Image Processing

Image Understanding - Example - Original Image

Z 160

- Optical Inspection

AC 126

- 168 m EP
- $20 \mu \mathrm{~m}$ BCP
- Optical Inspection

Image Understanding - Example - ROl's

Regions: Surface Properties

Comparison of the Welding Seam (Zanon \& RI)

Comparison of the Welding Seam (Zanon \& RI)

Image Understanding - Example - Boundaries

Scatterplots

Boundaries: identifying welding seam \& patterns

Properties of Irregularities - AC 126 Equator 1

Properties of Irregularities - AC 126 Equator 3

Properties of Irregularities - Z160 Equator 6

Properties of Irregularities - Z160 Equator 7

Summary

Done:

$>$ Toolbox has been developed to analyze huge amount of images
> Classification of the objects started

We want to:

$>$ Improve and investigate the algorithm to

- understand the influence of illumination on parameters
- identify individual objects (irregularities - defects) automatically
> Understand and classify the influence of surface preparation on parameters
> Dream: find correlation between defects and maximum gradient

```
2D - 3D
```


Input stack

Composite image

3-D visualization

Topography map

External Program - ,Complex wavelet-based method‘ (Focus Stacking)
B. Forster, D. Van De Ville, J. Berent, D. Sage, M. Unser, "

Complex Wavelets for Extended Depth-of-Field: A New Method for the Fusion of Multichannel Microscopy Images ," Microsc. Res. Tech., 65(1-2), pp. 33-42, September 2004.

2D - 3D

Irregularities - BW

Asymmetry in Scatterplot

Example

885 Objects @ dtm<-3000, [-30³0]
1534 Objects @ dtm>3000, [-30309]

Cavities

> Cavities tested with new illumination set (LED Stripes):

- Z160 - After delivery (scanned)
- The pi-mode is limited at $24.8 \mathrm{MV} / \mathrm{m}$ with $\mathrm{Q}=4.9 \mathrm{E} 9$ and some FE.
- The hotspot in the pi-mode was found in cell 1 , the same location heats in in 6 pi/9-mode. Cell 5 is quenching in the modes $7 \mathrm{pi} / 9$, $5 \mathrm{pi} / 9$, $3 \mathrm{pi} / 9$ and 1 pi/9. Cell 9 quenches in the $8 \mathrm{pi} / 9$-mode and cell 3 in the $2 \mathrm{pi} / 9$-mode. The $4 \mathrm{pi} / 9-$ mode is limited by power.
- Optical Inspection showed no irregularities at these spots
- Z161 - After delivery / USS / EP (Henkel) (scanned)
- AC126 - After multiple surface treatments (EP @ DESY, Baking, BCP, Baking) (scanned)
- The cavity is limited at $20.4 \mathrm{MV} / \mathrm{m}$ by quench with $\mathrm{Q}=1.7 \mathrm{E} 10$ and no FE .
- The quench-location for the pi-mode was found in cell 2. This location is also the hotspot in modes 8pi/9, 4pi/9, 3pi/9 and 2pi/9.
- For the modes $6 \mathrm{pi} / 9,5 \mathrm{pi} / 9$ and $1 \mathrm{pi} / 9$ the quench was found in cell 3.
- In the 7pi/9-mode, the cavity quenches in cell 9.
- Time dependent Tmaps have been done for the pi-mode: Heating is observed in a large area, with the hottest spot next to the equator.
- Optical Inspection found stains from the HPR
- Z162 - After delivery (scanned)
- Z163 - After delivery
- Z164 - After delivery

Optical Inspection

$>$ Picture covers 5 deg.

- 90 images per equator (edges overlap)
- 810 images per cavity (without iris)
$>2616 \times 3488$ pixel, effective resolution of $3.5 \mu \mathrm{~m} /$ pixel
> Now bitmap, soon png
$>$ ~ 26 MB per image

