Status of ILC High Gradient Cavity R&D at Jefferson Lab

Rong-Li Geng for JLab Team and Collaborators

Jefferson Lab

Linear Collider Workshop of the Americas March 19-23, 2011, Eugene, Oregon, USA

Content

- Brief overview
- Some new results
- Near term plan
- Long term plan

Brief Overview

- Delivered significant 9-cell throughput with resulting simple and reproducible process through correlation, feedback & optimization
 - 107 EP cycles (310 hours voltage-on time)
 - 142 RF tests at cryogenic temperatures
 - 46 distinct 9-cell cavities processed/tested
 - Several Hi-Grade SRF workers trained
 - 4 technicians
 - 2 physicists
 - 1 graduate student (Ph.D. thesis work on quench studies)
 - High gradient procedures in hand for technology transfer
- Added new fundamental understandings (more later)
 - Geometrical defects for quench limit < 25 MV/m
 - EP specific field emitter: niobium oxide granules
- Delivered new gradient and yield results (more later)
 - Practical gradient envelope pushed to ~ 40-43 MV/m (Hpk~180 mT) in TTF-style cavity.
 - Example of 90% gradient yield at 35 MV/m (up to 2nd pass processing, 10 ACCEL/RI cavities)
- Made contribution/impact to external/internal projects
 - Provide feedback to AES and contributed to qualification of AES as first US vendor for ILC
 - Qualified 9-cell cavities for S1-global at KEK and for S1 cryomodule CM2 at FNAL
 - Collaboration with KEK-STF and ANL/FNAL on EP optimization
 - ILC high gradient R&D led to EP of JLAB's CEBAF upgrade cavities (7-cell cavities, total 80).

Optimized JLab EP and Cleaning Procedure Repeatable process, reproducible result

-| 1E-4 50

20

E_{acc}, MV/m

30

Gradient Scatter (up to 2nd-pass proc.)

RLGeng19oct10

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 13, 124702 (2010)

Surface characterization of Nb samples electropolished with real superconducting rf accelerator cavities

Xin Zhao,^{1,*} Rong-Li Geng,¹ P. V. Tyagi,² Hitoshi Hayano,³ Shigeki Kato,^{2,3} Michiru Nishiwaki,³ Takayuki Saeki,³ and Motoaki Sawabe³

¹Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA ²Graduate University for Advanced Studies, School of Advanced Sciences (GUAS/AS), Ibaraki, Japan ³High Energy Accelerator Research Organization (KEK), Ibaraki, Japan (Received 30 November 2009; revised manuscript received 2 December 2010; published 30 December 2010)

Rongli Geng

Some New Progress and Results

- New vendor cavity processing and testing in support of America vendor development
 - One of the first two 9-cell cavities made by Niowave/Roark
 - Systematic tracking and study of "genetic defect"

Cross-region cavity exchanges

- 9-cell fine-grain and large-grain 9-cell cavities in collaboration with PKU
- MHI#8 S0 processing and testing in collaboration with KEK
- JLAB LG#1 local grinding in collaboration with KEK

Alternate cavity R&D for higher performance and lower cost

- Low-loss shape cavity ICHIRO7 in collaboration with KEK
- Seamless 9-cell cavity evaluation in collaboration with DESY

Capability upgrade

- Transfer Cornell OST to JLAB
- Transfer KEK replica to JLAB
- Upgrade JLAB high-resolution optical inspection machine

Magneto-Breakdown studies

- Controlled defect in 1-cell cavity
- Advanced studies using 9-cell pass-band modes

New 9-cell Cavity by Niowave/Roark

Profiles of Defect(s) Limiting NR1 to 17 MV/m

Geometric defects at quench location in cell #5 of NR1

Inside fusion region of equator EBW

Defects are suspected to be disclosed welding pockets Width: 226um Height: 105un

Tracking for Outstanding Features in NR1 Cell#4 (51mm, 175Degree), near equator EBW

Cell#4 quench reached a surface magnetic field of 1022 Oe, corresponding to 24 MV/m

Tracking of Outstanding Features in NR1 Cell#4 (51mm, 175Degree), near equator EBW

Cell#4 quench reached a surface magnetic field of 1022 Oe, corresponding to 24 MV/m

Cross-Region Cavity Exchange

KEK scientists, Kirk Yamamoto and Ken Watanabe, visited JLab

- Cavity processing procedure exchange
- At-cavity field emission monitoring and cross-checking
- KEK replica technology transfer to JLab
- A mini-plug-compatibility test

Cross-Region Cavity Exchange (cont)

PKU2

• First TTF-style 9-cell large-grain cavity with end group component

• Cavity reached quench field of 22.4 MV/m

• Cavity achieved very high Q₀

- 2E10 at 20 MV/m, 2K
- 3.2E10 at 20 MV/m, 1.8K

PKU3

• First TTF-style 9-cell fine-grain cavity with end group component built in China to reach a gradient usable for ILC

• Cavity reached quench field of 28.3 MV/m

Cross-Region Cavity Exchange (cont)

JLAB LG#1 quench defect (a weld hole repair) in cell#5 has been successfully removed by local grinding at KEK.

The repaired cell is improved from 1320 Oe (31 MV/m) to 1832 Oe (43 MV/m).

9-Cell Large-Grain Cavity JLAB LG1

Alternate Cavity R&D for > 45 MV/m

ICHIRO7 processing and testing in collaboration with KEK

KEK scientists Fumio Furuta and Kenji Saito visited JLab

 Collaboration aims for > 45 MV/m demonstration in a 9-cell cavity

ICHIRO7 recently reached 40 MV/m with Q₀ 8E9

ALCPG2011, 3/19-23, 2011

Capability Enhancement/Upgrade

Cornell OST transfer to JLab for cross-checking and routine quench location detection

ALCPG2011, 3/19-23, 2011

Capability Enhancement/Upgrade (cont)

KEK replica technology transfer to JLab for 3D defect profiling and sduties

Capability Enhancement/Upgrade (cont)

A dual-mode high-resolution optical inspection machine at JLab

Quastar Based system with a rotatable mirror inserted into Cavity

NOTICE

Small (down to 50 mm) or large aperture cavities can be inspected

Magneto-Breakdown Studies

Advanced 9-cell measurements using OST and pass-band modes First measurements clearly show non-thermal breakdown

Near Term Plan (2011-2012)

- Continue SO processing and testing using JLab's established procedure to support global cavity gradient yield analysis
 - Throughput will be adjusted
 - 12 GeV 7-cell cavity EP work impacts facility availability
 - US program evolving (9-cell hydro-forming; 9-cell mechanical polishing)
 - Manual labor to be done by trained production staff
- Breakdown studies to support new vendor qualification (low field quench) and to push gradient envelope (high field quench)
 - High-resolution local thermometry
 - First prototype being built
 - First test is NR1 twin defects which are 3.8 mm apart
 - Advanced studies of magneto-breakdown
 - Controlled geometric defect in 1-cell cavity
 - Local electron-beam re-melting for defect removal technique development
- Field emission studies and countermeasure developments
 - At-cavity X-ray monitoring and X-ray mapping
 - Optical observation of cavity inner space
 - In-situ processing techniques such as glow-discharge cleaning

Long Term Plan (beyond 2012)

- Continue alternate shape cavity work to push gradient toward prototype 9-cell bulk Nb cavity at 45-50 MV/m
 - ICHIRO cavity processing and testing in collaboration with KEK
 - Develop prototype LSF shape cavity in collaboration with SLAC
- Develop Nb/Cu composite material cavity toward 90% yield at 45 MV/m
- Develop solution for Q₀ 1-2E10 at 40 MV/m
 - Optimized surface removal and heat treatment
 - Encouraging evidence already observed in recent 9-cell studies at JLab inspired by on-going JLab high-Q program
- Develop technology prototype via cavity system development using new materials in collaboration with surface and thin film experts
 - ALD
 - Energetic deposition