
SiD Tracking and Vertexing

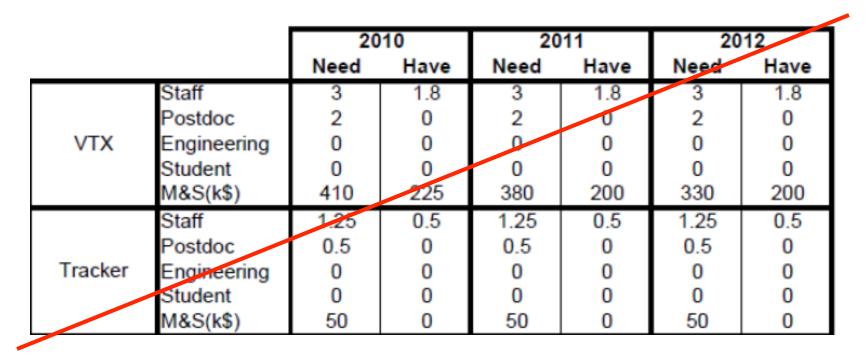
Towards the DBD

Marcel Demarteau

For the SiD Tracking and Vertexing Group

SiD Workshop Eugene, Nov. 15-17, 2010

DBD Charge from RD


- **1.** Demonstrate proof of principle on critical components
 - When there are options, demonstrate feasibility of at least one option
- 2. Define a feasible baseline design
 - Options may be considered.
- 3. Develop a realistic integrated mechanical design for the detector
 - Account for dead zones, support structures, cables, gaps, ...
- 4. Develop a corresponding realistic simulation model of the baseline design, including the identified faults and limitations.
- 5. Develop a push-pull mechanism

✓ ANL workshop

- 6. Develop a realistic concept of integration with the accelerator including the IR design ✓ ANL workshop
- 7. Simulate and analyze updated benchmark reactions with the realistic detector model, including the effects of background
- 8. Simulate and study some reactions at 1 TeV
- 9. Develop an improved cost estimate

Resource Estimate at Argonne Workshop 🖊

• Resource estimate that entered the overall SiD workplan

- Top Down approach. Didn't really work in my humble opinion
- Try Bottoms Up approach

Milestones and Timeline

- This is the first time for the group to come together since the Argonne workshop. The group has had little interaction on the formation of a plan for the DBD (mea culpa).
- It does not seem correct to suggest timelines and milestones without a group discussion.
- Many open questions depend on the available resources and people's motivation and availability, which are characterized by large uncertainties.

• Rutherford workshop, March 2008

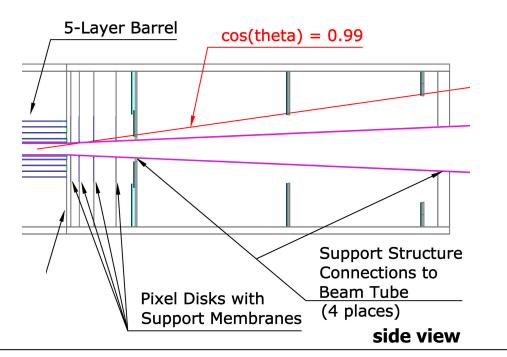
J. Albert³, F. Blanc¹¹, M. Breidenbach⁹, W. Cooper⁴, C. Damerell⁸, C. Deaconu⁹, M. Demarteau⁴, J.F. Genat⁶, N. Graf⁹, J. Goldstein⁸, S. Hillert⁷, M. Hoeferkamp¹², J. Jaros⁹, T. Johnson⁹, R. Kutschke⁴, K. Krempetz⁴, R. Lipton⁴, T. Markiewicz⁹, T. Maruyama⁹, J. McCormick⁹, C. Meyer¹⁰, C. Milstene⁴, T. Nelson⁹, A. Nomerotski⁷, D. Onoprienko⁵, R. Partridge², T. Rice¹⁰, A. Savoy-Navarro⁶, B. Schumm¹⁰, S. Seidel¹², N. Sinev¹³, K. Stefanov⁸, D. Su⁹, E. von Toerne⁵, S. Wagner¹¹, H. Wenzel⁴, S. Worm⁸, H. Weerts¹

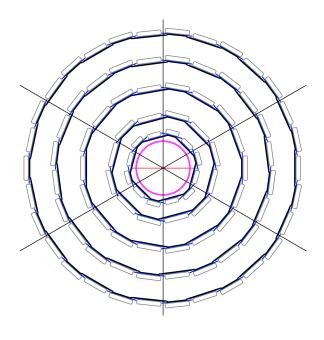
• Today

M. Breidenbach⁹, W. Cooper⁴, C. Damerell⁸, M. Demarteau⁴, N. Graf⁹,
M. Hoeferkamp¹², J. Jaros⁹, T. Johnson⁹, K. Krempetz⁴, R. Lipton⁴, T. Markiewicz⁹,
T. Maruyama⁹, J. McCormick⁹, T. Nelson⁹, R. Partridge², A. Savoy-Navarro⁶,
B. Schumm¹⁰, S. Seidel¹², N. Sinev¹³, D. Su⁹, S. Wagner¹¹, H. Weerts¹

Plus CLIC efforts on simulation

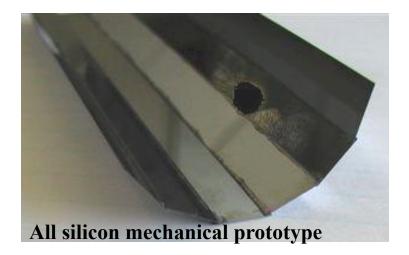
Milestones and Timeline


- This is the first time for the group to come together since the Argonne workshop. The group has had little interaction on the formation of a plan for the DBD (mea culpa).
- It does not seem correct to suggest timelines and milestones without a group discussion.
- Many open questions depend on the available resources and people's motivation and availability, which are characterized by large uncertainties.
- The collaboration as a whole needs to be involved to identify priorities; not everything can be accomplished for the DBD
- Based on the discussions at this workshop now we will develop a timeline with milestones and submit those in the next month.

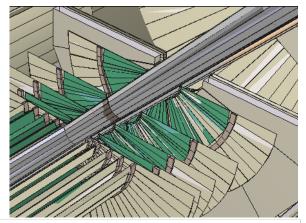

Pixel Detector Mechanical Design

- Baseline vertex detector assumes a central, 5-layer barrel, two 4-plane end disk assemblies and three additional disks per end for extended coverage
- All elements are supported indirectly from the beam tube via double-walled, carbon fiber laminate half-cylinder
- Barrel Region
 - Five layers
 - Longitidunal coverage: ± 62.5 mm
 - Radial coverage: 14 < R < 61 mm

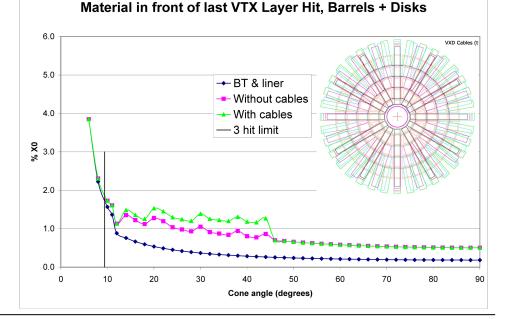
- Forward regions
 - Four disks
 - $z = \pm 72, \pm 92, \pm 123, \pm 172 \text{ mm}$
 - Radial coverage: R < 71 mm



Mechanical Layout

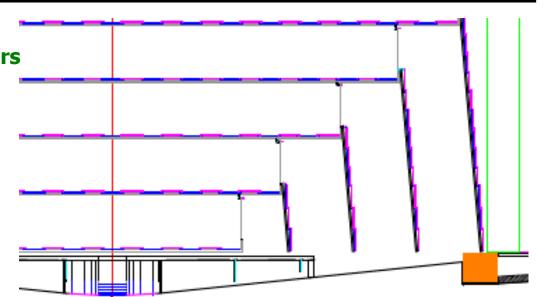

- All Silicon layout is the baseline choice: proposed to mitigate CTE issues
 - Uses only the silicon sensors in "cylindrical" portions of the structure
- Sensors glued to one another along edges by thin beads of epoxy and supported by thin, flat carbon fiber/epoxy end membranes
 - 75 µm silicon thickness assumed
 - Could be modified for thicker or thinner sensors
 - Parametric FEA model for all 5 layers of this detector (UW)

- Monte Carlo assumes regular support structure
- Demonstrate mechanical robustness of an all-silicon vertex detector without intrinsic support?


Mechanical Layout: Forward Region Sil

- Forward pixel detectors are notoriously difficult to build in low mass, low power configuration with very little additional mass due to cables
- Silicon disks with support and readout at the periphery is in the LOI
 - Silicon pixel disks have never been built to date as far as I know

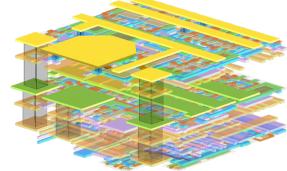
• Frankly, this area is not well studied.


- There are many open issues
 - Mass budget
 - Sensor layout
 - Power delivery, pulsing and Lorentz forces

Tracker Design

SiD

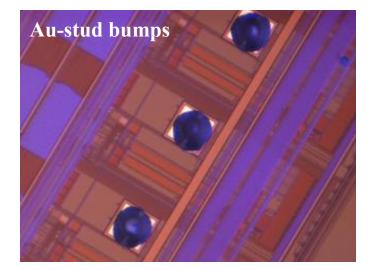
- Support
 - Double-walled CF cylinders
 - Allows full azimuthal and longitudinal coverage
- Barrels
 - Five barrels, measure Phi only
 - 10 cm z segmentation
 - Barrel lengths increase with radius
- Disks
 - Four double-disks per end, lampshade geometry
 - Measure R and Phi
 - Varying R segmentation
 - Disk radii increase with Z
- Tracker Design seems quite adequate
- Demonstrate the mechanical stability of the lightweight carbon fiber support structures, especially under power pulsing (Lorentz forces) power pulsing to be addressed



Vertex Sensor Technology

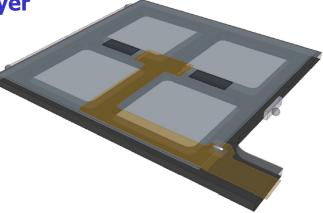
- Given the scale of the vertex detector, it has been our position that we don't need to have a baseline design for the sensors at the time of the DBD.
- That said, sensor R&D on Chronopixel and 3D technology actively pursued
 within SiD
 - Chronopixel:
 - Two more rounds of fabrication with deep p-well and high resistivity epi layer
 - Will be demonstrator and not achieve pixel size needed given the feature size available in process
 - 3D:
 - First devices are imminent (end of the month)
 - If successful, demonstrator devices at the end of the year
 - In future years start building real prototype devices and test in beam tests
- Many other technologies being pursued by other groups

• Self-sufficient efforts



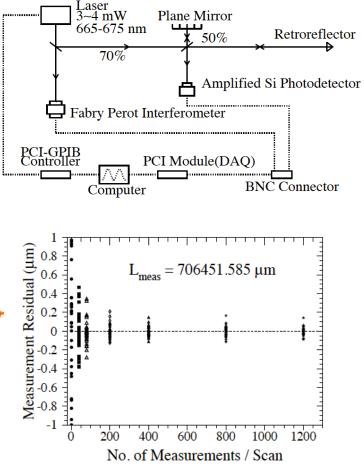
Tracking Sensor Technology

- Module is hybrid-less design with 3 components:
 - Silicon Sensor
 - kPix readout ASIC
 - Flexible readout cable
- All components in hand
- Thought to be relative straightforward extension of existing technology
- However, wirebonding of the HPK single-sided Si strip detectors causes shorts to the double-metal layer
 - Bump bonding seems to be okay
- Need to build a full readout chain and test it, preferentially in beam
 - Sensor
 - 1024-channel kpix
 - Readout cable
- In high B-field?



Tracking Module

- Material budget goal for tracker is 0.8% X₀ per layer
- Module Frame
 - Minimal frame to hold silicon flat and provide precision mounts
 - CF-Rohacell-Torlon frame w/ ceramic mounts
 - CF-Torlon clips glue to large-scale supports
 - Ease of large scale production, assembly and installation/replacement

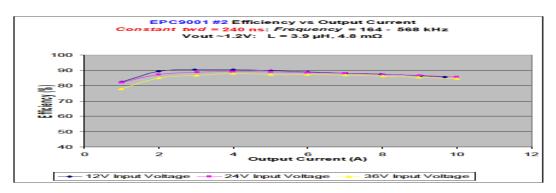


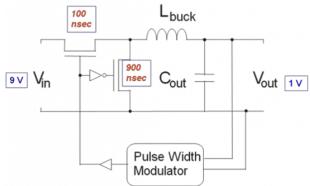
- Module Chain
 - Connect N modules through common cable to optical drivers at the end of tracking volume
- Mechanical support structure
 - Have all issues related to gas cooling been laid to rest?
- Build a module and larger scale structure to show that material and power budget can be met for the tracker ?

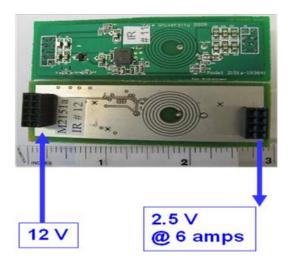
Push-Pull

- Given the push-pull configuration of the detectors, establishing an alignment procedure and establishing the technology is important
- Baseline for SiD is the Frequency Scanned Interferometry (FSI)
- Project currently funded at 50% level of request for this fiscal year

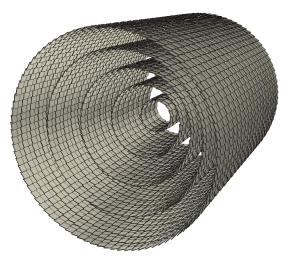
- Develop the alignment procedure and establish the technology
 - Implement multiple channels/dual laser
 - Demonstrate 3-dimensional reco of reference point
 - Produce conceptual design






Power Delivery

- Power delivery and consumption is an integral part of the inner detector system
- R&D on power, both power provision and power pulsing is rather limited, given it's importance
- Studies on commercial Si and GaN devices are promising for LHC and ILC
- Demonstrate the power pulsing for the vertex and tracking system with kPIX for the DBD, and obtain significant reduction in power consumption
- Synergies with LHC is substantial



Simulation

- Simulation studies for LOI were carried out with virtual segmentation
 - Barrel sensors have been approximated by thin cylinders, while the disk sensors have been approximated by planar disks perpendicular to bea
- Poly-hydra geometry definition now exists
 - Fully segmented detector with individual sensors, overlap and dead material

- Need to implement in the simulations and analysis:
 - Improved modeling of tracker elements
 - More realistic hit digitization and clustering
 - Implementation of a Kalman filter track fitting algorithm
 - Further optimization of the detector layout
 - Additional studies of calorimeter assisted tracking
 - Studying impact of hit inefficiencies / dead channels, non-uniform magnetic field, beam backgrounds, etc.

Tracking: Future Work

- Further optimization of the detector layout
 - Number and position of layers
 - Strip and pixel size and layout
 - All pixel tracker option
- Additional studies of calorimeter assisted tracking
 - Assist in kink finding and identification
 - Identification of long-lived resonance decays & γ conversions
- Systematic studies of the impact of:
 - hit inefficiencies / dead channels,
 - non-uniform magnetic field,
 - beam backgrounds,

Norman Graf's Talk Yesterday

. . .

DBD Charge

• What really "critical" subsystem R&D should be demonstrated for the DBD?

Critical = of the utmost importance, cannot do without, indispensable

- 1. Demonstrate mechanical robustness of an all-silicon vertex detector without intrinsic support?
- 2. Demonstrate the mechanical and electrical feasibility of forward pixel disks: mass budget, withstand Lorentz forces, sensor layout
- *3. Demonstrate the mechanical stability of the lightweight carbon fiber support structures, especially under power pulsing (Lorentz forces) power pulsing to be addressed*
- 4. Demonstrate full readout chain of HPK double-metal sensor with kPIX and readout cable. In testbeam? In high B-field?
- 5. Build a module and larger scale structure to show that material and power budget can be met for the tracker ?
- 6. Develop the alignment conceptual design and establish the technology
- 7. Demonstrate the power pulsing for the vertex and tracking system with kPIX for the DBD, and obtain significant reduction in power consumption
- 8. Optimize the tracking software in the simulation and analysis: