Physics Study of ILC Machine Baseline Design

Jim Brau November 15, 2010

ILC Scope

ILCSC "scope document" specifies the requirements, including emphasis on importance of variable energy operation, with good luminosity performance

•Top could be special messenger; 350 GeV scan!

•Polarization very powerful probe!

RDR vs ILC Physics Goals

- E_{cm} adjustable from 200 500 GeV
- Luminosity $\rightarrow \int Ldt = 500 \text{ fb}^{-1}$ in 4 years
- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%
- The machine must be upgradeable to 1 TeV

The RDR Design meets these "requirements," including the recent update and clarifications of the reconvened ILCSC Parameters group!

7-Feb-07 GDE/ACFA Closing Beijing

ilr

İİL

Global Design Effort

2

ILC Design Evolution

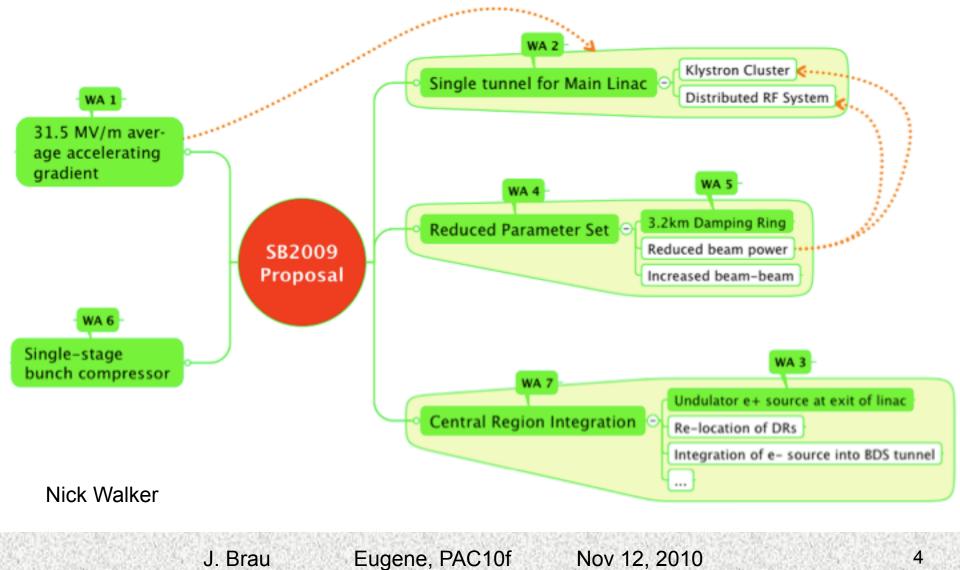
- Reference Design Report (RDR) 2007
 - First detailed technical snapshot, defining in detail the technical parameters and components to guide the development of the worldwide R&D program
- SB2009
 - Proposed set of changes to the baseline aimed at optimizing ILC design for cost, performance and risk.
 - Physics impact studied and commented on by Physics and Detectors Study Group*
- New ILC Design and Parameters
 - Response to study group's reaction to reduced low energy luminosity – a modified design with new parameters

* T. Barklow, M. Berggren, J. Brau, K. Buesser, K. Fujii, N. Graf, J. Hewett, T. Markiewicz, T. Maruyama, D. Miller, A. Miyamoto, Y. Okada, M. Thomson, G. Weiglein
 J. Brau Eugene, SiD Workshop Nov 15, 2010

Reference Desion Reno

Summary report of the first meeting on Accelerator Design & Integration

> Ewan Paterson (SLAC) Marc Ross (FNAL) Nick Walker (DESY) Akira Yamamoto (KEK)


Editors:

ILC-EDMS ID: D*879845

28-29th May, DESY

17th June 2009

SB2009 Themes

J. Brau

Nov 12, 2010

4

Baseline Assessment -2, Themes

- Reduction of # bunches (2625 \rightarrow 1312)
 - Reduced beam power → reduced RF
 - Smaller damping rings (6.4 km \rightarrow 3.2 km)
 - Regain luminosity via stronger focusing at IP

Re-location of <u>e</u>+ source to end on Main Linac

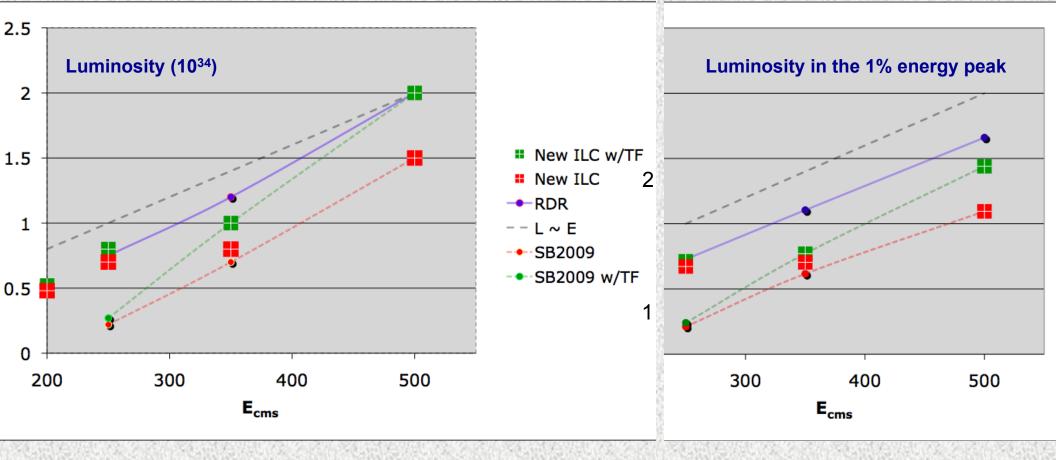
- Better integration (central campus) higher overhead (at 500 <u>GeV</u> running) ⇒ reduced risk
- Issues of running for Ecm < 300 GeV

								upgrade
Centre-of-mass energy	E_{cm}	GeV	200	230	250	350	500	1000
Luminosity	L	×10 ³⁴ cm ⁻² s ⁻²	0.5	0.5	0.7	0.8	1.5	2.8
Luminosity (Travelling Focus)	L _{TF}	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.5		0.8	1.0	2.0	
Number of bunches	n_b		1312	1312	1312	1312	1312	2625
Collision rate	f_{rep}	Hz	5	5	5	5	5	4
Electron linac rate	f_{linac}	Hz	10	10	10	5	5	4
Positron bunch population	N_{+}	×10 ¹⁰	2	2	2	2	2	2

Jan 18-21 @ SLAC

Nick Walker

Recently Updated ILC Machine Parameters


								upgrade
	Centre-of-mass energy	E _{cm}	GeV	200	250	350	500	1000
	Beam energy	E beam	GeV	100	125	175	250	500
	Lorentz factor	γ		1,96E+05	2,45E+05	3,42E+05	4,89E+05	9,78E+05
	Collision rate	frep	Hz	5	5	5	5	4
	Electron linac rate	f linac	Hz	10	10	5	5	4
	Number of bunches	n b		1312	1312	1312	1312	2625
	Electron bunch population	Ν_	×10 ¹⁰	2	2	2	2	2
	Positron bunch population	N+	×10 ¹⁰	2	2	2	2	2
	Bunch seperation	∆tb	ns	740	740	740	740	356
	Bunch seperation ×f _{RF}	∆t _b f _B	UF	962	962	962	962	463
	Pulse current	I beam	mA	4,33	4,33	4,33	4,33	9,00
	RMS bunch length	σ_z	mm	0,3	0,3	0,3	0,3	0,3
	Electron RMS energy spread	∆p/p	%	0,22	0,22	0,22	0,21	0,11
	Positron RMS energy spread	∆p/p	%	0,17	0,14	0,10	0,07	0,04
	Electron polarisation	Ρ.	%	80	80	80	80	80
	Positron polarisation	P +	%	31	31	29	22	22
	Horizontal emittance (linac exit)	γε _x	μm	10	10	10	10	10
	Vertical emittance (linac exit)	γε _y	nm	35	35	35	35	35
	IP horizontal beta function	β _x *	mm	16	12	15	11	30
	IP vertical beta function (no TF)	β_y^*	mm	0,48	0,48	0,48	0,48	0,30
	IP vertical beta function (TF)	β_y^*	mm	0,2	0,2	0,2	0,2	0,2
	IP RMS horizontal beam size	σ _x ∗	nm	904	700	662	474	554
	IP RMS veritcal beam size (no TF)	σ_y^*	nm	9,3	8,3	7,0	5,9	3,3
	IP RMS veritcal beam size (TF)	σ_y^*	nm	6,0	5,3	4,5	3,8	2,7
to TF	Horizontal distruption parameter	Dx		0,2	0.3	0.2	0,3	0,1

J. Brau

Recently Updated ILC Machine Parameters (cont.)

IP and	General Parameters							
								upgrade
	Centre-of-mass energy	E _{cm}	GeV	200	250	350	500	1000
	Vertical disruption parameter	D_y		20,7	23,8	21,3	24,9	19,2
	Horizontal enhancement factor	H _{Dx}		1,1	1,1	1,1	1,2	1,0
	Vertical enhancement factor	H _{Dy}		5,7	6,0	5,8	6,1	3,6
	Total enhancement factor	H _D		1,8	1,9	1,8	2,0	1,5
	Geometric luminosity	L geom	×10 ³⁴ cm ⁻² s ⁻¹	0,2	0,4	0,5	0,8	1,8
	Luminosity	L	×10 ³⁴ cm ⁻² s ⁻²	0,5	0,7	0,8	1,5	2,8
	Fraction of luminosity in top 1%	L _{0.01} /I			0,96	0,88	0,73	
	Average beamstrahlung parameter	Yav		0,013	0,021	0,032	0,063	0,109
	Maximum beamstrahlung parameter	Ymax		0,032	0,051	0,075	0,150	0,260
	Average number of photons / particl	nγ		0,96	1,22	1,28	1,74	1,46
	Average energy loss	δE _{BS}	%	0,53	1,04	1,55	3,76	4,83
	Number of pairs per bunch crossing	N _{pair}	×10 ³		97,4	214	494	
Vith TF	Luminosity	L	×10 ³⁴ cm ⁻² s ⁻²	0,5	0,8	1,0	2,0	
	Average energy loss	$\delta E_{\rm BS}$	%		0,6	1,6	3,6	
	Number of pairs per bunch crossing	N _{pair}	×10 ³		115	255	596	
	Fraction of luminosity in top 1%	L _{0.01} /I			0.89	0,77	0,72	

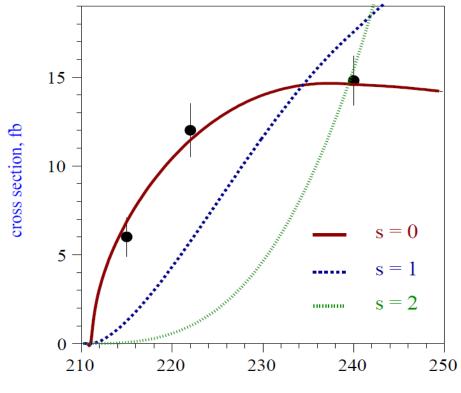
Recently Updated ILC Machine Parameters

TF = traveling focus

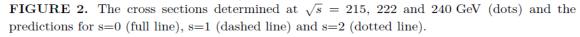
J. Brau Eugene, SiD Workshop Nov 15, 2010

8

Physics and Detector Studies of New ILC Parameters


Effects which have been studied

- Luminosity at low E_{cms}
- Effective luminosity due to Beamstrahlung losses
- Machine backgrounds Takashi Maruyama


Physics processes studied to assess impact

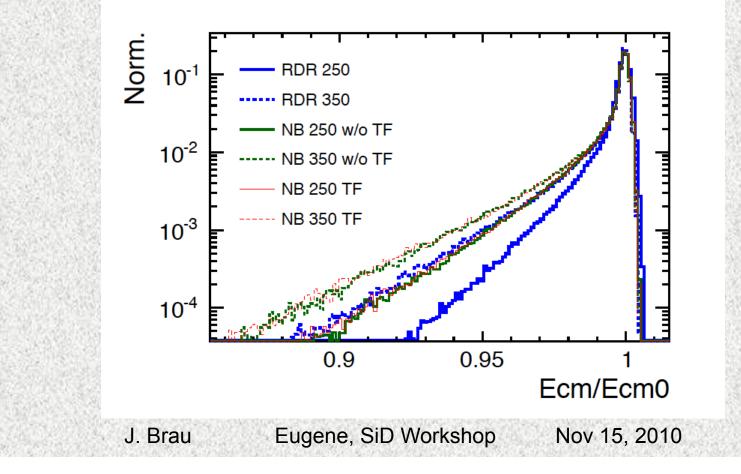
- $e^+e^- \rightarrow Z h \rightarrow \mu^+ \mu^-$ Higgs
 - Higgs mass Hengne Li
 - Higgs cross section Hengne Li
 - Higgs branching ratios Hiroaki Ono at ECFA IWLC
- Stau detection (forward electron vetoes) Mikael Berggren et al.
 - Low mass SUSY scenarios study Paul Grannis
 - Snowmass SM2 benchmark
 - (m₀ = 100 GeV, m_{1/2} = 250 GeV, tan β = 10, A₀ = 0, and sign μ = +) similar to SPS1a point

Higgs threshold spin analysis

√s, GeV

hep-ph/0302113 Dova, Garcia-Abia and Lohmann

J. Brau Eugene, SiD Workshop Nov 15, 2010

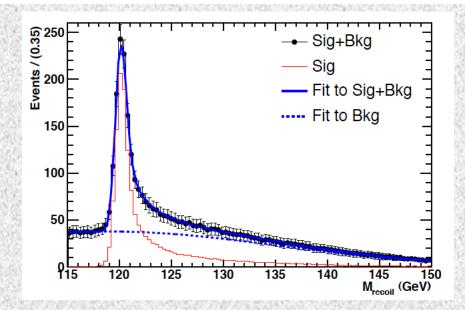

20 fb⁻¹ at each energy point

This is an example of the need for good low energy luminosity

10

Higgs Mass and Cross Section

- Higgs measurements are best done at E_{cm}=250 GeV
- New Study of Higgs Recoil Mass compares new machine parameters with RDR, and operation @ 350 GeV - Hegne Li


Hengne Li

Higgs Mass and Cross Section

	Beam Par	$\mathcal{L}_{\mathrm{in}}$	$_{t} (fb^{-1})$	ϵ	S/B	$M_H (\text{GeV})$	σ (fb) $(\delta\sigma/\sigma)$
	RDR 250		188	55%	62%	120.001 ± 0.043	11.63 ± 0.45 (3.9%)
_	RDR 350		300	51%	92%	120.010 ± 0.087	7.13 ± 0.28 (4.0%)
	NB w/o TF 250 $$		175	61%	62%	120.002 ± 0.032	$11.67 \pm 0.42 \ (3.6\%)$
	NB w/o TF 350		200	52%	84%	120.003 ± 0.106	$7.09 \pm 0.35 \; (4.9\%)$
	NB w/ TF 250	\triangleright	200	63%	59%	120.002 eq 0.029	11.68 ± 0.40 (3.4%)
	NB w/ TF 350		250	51%	89%	120.005 ± 0.093	7.09 ± 0.31 (4.4%)

Coupling precision (cross section) better with new parameters than RDR

Higgs precision improvements: $\delta M: 43 \text{ MeV} \rightarrow 29 \text{ MeV} (\text{wTF})$ $\delta \sigma: 3.9\% \rightarrow 3.4\% (\text{wTF})$

Higgs Branching Ratios

- Study in progress
- Preliminary results presented in Geneva

ZH Branching ratio study @350 GeV

IWLC2010 ECFA WS @CERN Higgs SUSY and Cosmology session Oct. 19. 2010 H. Ono (NDU)

2010. Oct. 19

IWLC2010 ECFA WS @CERN

J. Brau

Higgs Branching Ratios

Relative branching fraction has checked for Ecm=250, 350 GeV with 1,000 times toy MC

$$\frac{Br(H \to c\overline{c})}{Br(H \to b\overline{b})} = \frac{r_{cc}/\varepsilon_{cc}}{r_{bb}/\varepsilon_{bb}}$$

Efficiency	Ecm=250	GeV	Ecm=350 GeV
	neutrino	hadron	hadron
ϵ_{bb}	36.8%	39.0%	31.7%
ε _{cc}	41.8%	41.9%	35.5%

Fitted results	Ecm=250 GeV		Ecm=350 GeV						
mode	neutrino	hadron	w/o qq	hadron					
r _{bb}	0.853+-0.009	0.774+-0.013	0.775+-0.014	0.788+-0.008					
r _{cc}	0.052+-0.004	0.046+-0.005	0.046+-0.004	0.048+-0.002	H. On				
BR(cc)/BR(bb)	0.054+-0.004	0.055+-0.006	0.055+-0.005	0.054+-0.003					
Δ BR(cc)/BR(bb)	7.94%	10.15%	9.68%	6.18%					
(statistic error only) Preliminary result Measurement accuracy looks improved in hadron mode, caused by better S/√N?									
ACLE STAR SHOLD STOLEN AND THE HAVE BURCH STAR	CENTRAL CONTRACTOR OF CONT	gene, SiD Workst	KREWSPORT AND FREMAND ONCO 1724K	COLOR STATE AND THE AMOUNT OF A SECOND	14				

Low mass SUSY scenarios study

- Study of Snowmass SM2 point (~ SPS1a point)
 - hep-ex/0211002v1, P. Grannis

 $(m_0 = 100 \text{ GeV}, m_{1/2} = 250 \text{ GeV}, \tan \beta = 10, A_0 = 0, \text{ and } \operatorname{sign} \mu = +).$

	Μ	Final state	(BR(%))			
~			$(\mathbf{DR}(70))$			
\tilde{e}_{R}	143	$\widetilde{\chi}_1^{\ 0}e\ (100)$				
\tilde{e}_L	202	$\widetilde{\chi}_1^{\ 0}e\ (45)$	$\widetilde{\chi}_1^{\ \pm} \nu_e \ (34)$	$\widetilde{\chi}_2^{\ 0}e\ (20)$		
$\widetilde{\mu}_R$	143	$\widetilde{\chi}_1^{\ 0}\mu$ (100)				
$\widetilde{\mu}_L$	202	$\widetilde{\chi}_1^{\ 0}\mu$ (45)	$\widetilde{\chi}_1^{\ \pm} \nu_\mu \ (34)$	$\widetilde{\chi}_2^{\ 0}\mu$ (20)		
$\widetilde{ au}_1$	135	$\widetilde{\chi}_1^{\ 0} \tau \ (100)$				
$\widetilde{ au}_2$	206	$\frac{\widetilde{\chi}_1^0 \tau \ (49)}{\widetilde{\chi}_1^0 \nu_e \ (85)}$	$\frac{\widetilde{\chi}_1^- \nu_\tau (32)}{\widetilde{\chi}_1^\pm e^\mp (11)}$	$\frac{\widetilde{\chi}_2^{\ 0}\tau\ (19)}{\widetilde{\chi}_2^{\ 0}\nu_e\ (4)}$		
$\widetilde{\nu}_e$	186	$\widetilde{\chi}_1^{\ 0} \nu_e \ (85)$	$\widetilde{\chi}_1^{\pm} e^{\mp} (11)$	$\widetilde{\chi}_2^{\ 0} \nu_e \ (4)$		
$\begin{array}{c} \widetilde{\nu}_{\mu} \\ \widetilde{\nu}_{\tau} \end{array}$	186	$\widetilde{\chi}_1^{\ 0} \nu_\mu \ (85)$	$\widetilde{\chi}_1^{\pm} \mu^{\mp} (11)$	$\widetilde{\chi}_2^{\ 0} \nu_\mu \ (4)$		
$\widetilde{ u}_{ au}$	185	$\widetilde{\chi}_1^{\ 0} \nu_{\tau} \ (86)$	$\widetilde{\chi}_1^{\ \pm} \tau^{\mp} \ (10)$	$\widetilde{\chi}_2^{\ 0} \nu_{\tau} \ (4)$		
$\widetilde{\chi}_1^0$	96	stable				
$\widetilde{\chi}_2^{\ 0}$	175	$\widetilde{\tau}_1 \tau$ (83)	$\tilde{e}_R e$ (8)	$\widetilde{\mu}_{R}\mu$ (8)		
$\widetilde{\chi}_3^{\ 0}$	343	$\widetilde{\chi}_1^{\pm} W^{\mp} (59)$	$\widetilde{\chi}_2^{\ 0}Z$ (21)	$\widetilde{\chi}_1^{\ 0}Z$ (12)	$\widetilde{\chi}_1^{\ 0}h$ (2)	
$ \begin{array}{c} \widetilde{\chi}_{1}^{\ 0} \\ \widetilde{\chi}_{2}^{\ 0} \\ \widetilde{\chi}_{3}^{\ 0} \\ \widetilde{\chi}_{4}^{\ 0} \\ \end{array} $ $ \begin{array}{c} \widetilde{\chi}_{1}^{\ 0} \\ \widetilde{\chi}_{1}^{\ \pm} \\ \widetilde{\chi}_{2}^{\ \pm} \end{array} $	364	$\widetilde{\chi}_1^{\ \pm} W^{\mp} \ (52)$	$\widetilde{\nu}\nu$ (17)	$\widetilde{\tau}_2 \tau$ (3)	$\widetilde{\chi}_{1,2}Z$ (4)	$\widetilde{\ell}_R \ell$ (6)
$\widetilde{\chi}_1^{\pm}$	175	$\widetilde{\tau}_1 \tau$ (97)	$\widetilde{\chi}_1^{\ 0} q \overline{q} \ (2)$	$\widetilde{\chi}_1^{\ 0} \ell \nu \ (1.2)$		
$\widetilde{\chi}_2^{\pm}$	364	$\widetilde{\chi}_2^{\ 0}W$ (29)	$\widetilde{\chi}_1^{\ \pm}Z$ (24)	$\widetilde{\ell} \nu_{\ell} \ (18)$	$\widetilde{\chi}_1^{\pm} h \ (15)$	$\widetilde{\nu}_{\ell}\ell$ (8)

J. Brau

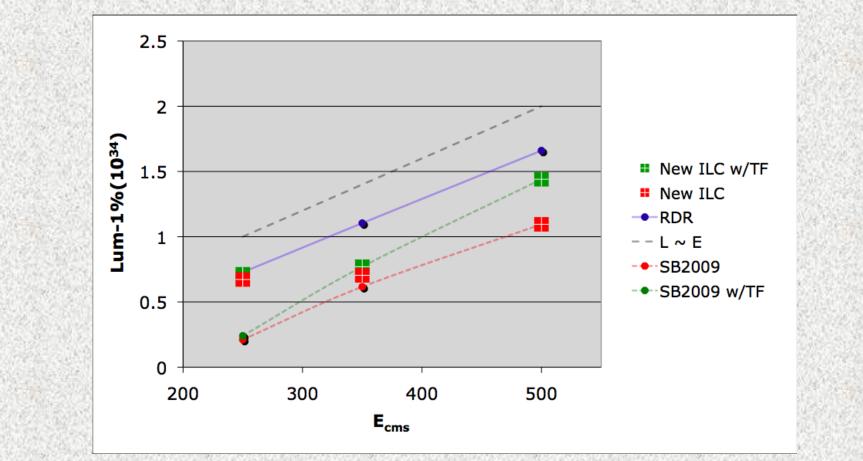
Eugene, SiD Workshop Nov 15, 2010

Low mass SUSY scenarios run allocations

Beams	Energy	Pol.	$\int \mathcal{L} dt$	$[\int \mathcal{L} dt]_{equiv}$	Comments
e^+e^-	500	L/R	335	335	Sit at top energy for sparticle masses
e^+e^-	M_Z	L/R	10	45	Calibrate with Z 's
e^+e^-	270	L/R	100	185	Scan $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ threshold (L pol.)
					Scan $\tilde{\tau}_1 \tilde{\tau}_1$ threshold (R pol.)
e^+e^-	285	R	50	85	Scan $\tilde{\mu}_R^+ \tilde{\mu}_R^-$ threshold
e^+e^-	(350)	L/R	40	60 (Scan $t\bar{t}$ threshold
					Scan $\tilde{e}_R \tilde{e}_L$ threshold (L & R pol.)
					Scan $\widetilde{\chi}_1^+$ $\widetilde{\chi}_1^-$ threshold (L pol.)
e^+e^-	410	L	60	75	Scan $\tilde{\tau}_2 \tilde{\tau}_2$ threshold
					Scan $\widetilde{\mu}_L^+$ $\widetilde{\mu}_L^-$ threshold
e^+e^-	580	L/R	90	120	Sit above $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$ threshold for $\tilde{\chi}_2^{\pm}$ mass
e^-e^-	285	$\mathbf{R}\mathbf{R}$	10	95	Scan with e^-e^- collisions for \tilde{e}_R mass

hep-ex/0211002v1, P. Grannis

~100	0 fb ⁻¹ equivalent luminosity
(S	caled by $L \sim E$) required to
ac	hieve physics program


Year	1	2	3	4	5	6	7	~
$\int \mathcal{L} dt$	10	40	100	150	200	250	250	
	0.57 1.55	ST 837 S		15 (5) (2)	2411120353	18 S. A.	S4042050	

Low mass SUSY scenarios run allocations

	δ <mark>Μ (</mark>	Ecm s	caling)	δ <mark>Μ (</mark>	SBmo	dified)	δ Μ (RDR)	
sparticle	endpt	scan	total	endpt	scan	total	endpt	scan	total
selectron_R	0.19	0.02	0.02	0.19	0.02	0.02	0.19	0.02	0.02
selectron_L	0.27	0.30	0.20	0.27	0.35	0.21	0.27	0.32	0.21
smuon_R	0.08	0.13	0.07	0.08	0.15	0.07	0.08	0.15	0.07
smuon_L	0.70	0.76	0.51	0.70	0.82	0.53	0.70	0.79	0.52
stau_1	~1-2	0.64	0.64	~1-2	0.73	0.73	~1-2	0.82	0.82
stau_2		1.10	1.10		1.25	1.25		1.25	1.25
sneutrino_e	~1		~1	~1		~1	~1		~1
sneutrino_mu	~7		~7	~7		~7	~7		~7
sneutrino_tau									
chi1^0	0.07		0.07	0.07		0.07	0.07		0.07
chi2^0	~1-2	0.12	0.12	~1-2	0.14	0.14	~1-2	0.14	0.14
chi3^0	8.50		8.50	8.50		8.50	8.50		8.50
chi4^0									
chi1^+	~1-2	0.18	0.18	~1-2	0.21	0.21	~1-2	0.19	0.19
chi2^+	4.00		4.00	4.00		4.00	4.00		4.00

sparticle mass precision expected in the RDR and SBmodified parameter sets differ little from those with the Ecm luminosity scaling. P. Grannis, Oct. 28, 2010

Physics Without Traveling Focus

- Loss of luminosity at highest energies
 - Impact needs to be quantified

Positron Polarization

	250 GeV	350 GeV	500 GeV
Positron Polarization	31%	29%	22%

- Physics case for polarized e⁻ and e⁺
 - Comprehensive overview, hep-ph/0507011, Phys.Rept., 460 (2008)
 - See also executive summary on:

www.ippp.dur.ac.uk/LCsources/

- Polarized beams required to
 - Analyze the structure of all kinds of interactions
 - Improve statistics: enhance rates, suppress background processes
 - Get systematic uncertainties under control
- Discoveries via deviations from SM predictions in precision measurements!
 - Important in particular at √s≤ 500 GeV !

G. Moortgat-Pick IWLC10, Geneva

Positron Polarization

Summary table and gain factor

Comparison with (80%,0): estimated gain factor when hep-ph/0507011 ٠ most (80%, 60%) (80%, 30%) Effects for $P(e^-) \longrightarrow P(e^-)$ and $P(e^+)$ Gain & Requirement Case Standard Model: Electroweak coupling measurement top threshold factor 3 gain factor 2 gain factor 1.4 Limits for FCN top couplings improved factor 1.8 tą P^T_{e-} P^T_{e+} required $P_{e^{-}}^{\mathrm{T}}P_{e^{+}}^{\mathrm{T}}$ required Azimuthal CP-odd asymmetries give CPV in tt access to S- and T-currents up to 10 TeV factor 1.3 worse W^+W^- Enhancement of $\frac{S}{B}$, $\frac{S}{\sqrt{B}}$ up to a factor 2 TGC: error reduction of $\Delta \kappa_{\gamma}$, $\Delta \lambda_{\gamma}$, $\Delta \kappa_Z$, $\Delta \lambda_Z$ factor 1.8 Specific TGC $\tilde{h}_{+} = \text{Im}(g_1^{\text{R}} + \kappa^{\text{R}})/\sqrt{2}$ $P_{e^{-}}^{\mathrm{T}} P_{e^{+}}^{\mathrm{T}}$ required P^T_{e-} P^T_{e+} required $P_{e^{-}}^{\mathrm{T}} P_{e^{+}}^{\mathrm{T}}$ required CPV in γZ Anomalous TGC $\gamma\gamma Z, \gamma ZZ$ Separation: $HZ \leftrightarrow H\bar{\nu}\nu$ HZfactor 4 gain factor 2 Suppression of $B = W^+ \ell^- \nu$ factor 1.7 Top Yukawa coupling measurement at $\sqrt{s} = 500 \text{ GeV}$ $t\bar{t}H$ factor 2.5 gain factor 1.6

J. Brau

Eugene, SiD Workshop Nov 15, 2010

G. Moortgat-Pick IWLC10, Geneva

TLCC Process: BAW2

- 1. Accelerating Gradient
- 2. Single-tunnel (HLRF)
- 3. Low-Power Parameter
- 4. Positron source location

1st BAW KEK 7-10th Sept. 2010 2nd BAW SLAC 18-21st Jan. 2011

Much work to do before SLAC workshop (Monthly WebEx meetings)

Issue Identification

Planning

:lr

İİL

- Identify further studies
- Canvas input from stakeholders

•

Baseline Assessment Workshops

- Face to face meetings
- Open to all stakeholders
- Plenary

Formal Director Approval

- Change evaluation panel
- · Chaired by Director

keywords: open, transparent

Nick Walker

	• More detailed simulations required
Travelling Focus	 Stability issues → impact on feedback and just tolerances considered higher-risk option
10Hz Operation (Low E _{cm})	 Inclusion not a cost issue Positron damping ring 50% duty cycle RF solution still required (this workshop) Understanding cost impact (1.9% TPC) Other emerging options (high-field undulator)
Upgrade / Risk- Mitigation	 Understand scenarios for re-establishing RDR bunch number Cost impact (mostly CFS) Considered either as possible luminosity upgrade or risk-mitigation (GDE PAC)
Physics impact	Working with Physics & Detector groups as part of the TLCC process

Nick Walker

Summary

- The New Baseline Machine Parameters are being studied by the physics and detectors SB2009 Working Group
 - Beamstrahlung losses
 - Machine backgrounds
 - Higgs mass, cross section, & branching ratios
 - Stau detection
 - Low mass SUSY scenario (an example)
 - Polarization
- The improvement in the low energy luminosity performance over the past year appears to have significantly restored physics potential of the ILC design
- We assume traveling focus will be implemented
 - Without it, the main impact would be at the highest energies $(\sim 25\%)$ loss of luminosity)
 - (~25% loss of luminosity)