Formula for converting DAQ data channels to correct gradient and phase settings

The DAQ data channels including notations for I and Q in term of vector-sum and individual cavity signals. These data have to be converted to get the correct values for amplitude and phase.

For the vector-sum-channels this reads as:

$$
\begin{gather*}
A_{v s}=\frac{\sqrt{I^{2}+Q^{2}}}{s c a} \tag{1}\\
P_{v s}=\frac{180}{\pi} \arctan \left(\frac{I}{Q}\right) \tag{2}
\end{gather*}
$$

Here sca is given as the global scaling coefficient which converts the bits in voltages. If this coefficient is not in the DAQ data, you can find it as:
TTF2.RF LLRF.CONTROLLER MAIN.ACC67 SETPOINT.SCALEFACTOR.
This factor has been constant during the study period. I checked the number which was:

238.8

For the individual cavities the gradients and phases are determined as:

$$
\begin{gather*}
A_{c a v}=\frac{\sqrt{I^{2}+Q^{2}}}{s c a \cdot l \cdot n} \cdot A_{s c a} \tag{3}\\
P_{c a v}=\frac{180}{\pi} \arctan \left(\frac{I}{Q}\right)+p_{\text {rot }} \tag{4}
\end{gather*}
$$

The scaling factor is the same as for the vector-sum given before. In addition to compute the gradient values, the cavity length 1 , number of cavities in one module n and the amplitude scaling and phase rotation factor is needed. These values have been:

$$
\begin{align*}
l & =1.036(m) \\
n & =8 \tag{5}\\
a_{\text {sca }} & =1.3660 \tag{6}\\
p_{\text {rot }} & =-21(\mathrm{deg}) \tag{7}
\end{align*}
$$

