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Luminosity in e+e- Colliders 
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As one of the most important parameters in a collider, its bunch 
luminosity can be written as, 

where frev is the revolution frequency, Nb bunch population,  the Lorentz 
factor, re the electron classic radius, y* beta function at the collision 
point, y beam-beam parameter, and Rhourglass geometrical  reduction factor. 

To increase the luminosity, one wants:  
• Ib = efrevNb as high as possible but limited by instabilities 
• y* as small as possible but limited by the hourglass effect. 
  As a result, y* approximately equals z in colliders 



Spectral Brightness 
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Due to diffraction of light, 
the spectral brightness 
from spontaneous 
synchrotron radiation in an 
undulator is limited to, 
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where F is the photon flux 
and  is the wavelength of 
x-ray. To go beyond this 
limit, one needs the process 
of FEL. That implies much 
higher peak current or 
much shorter bunch length. (courtesy of Bob Hettel) 



Coherent THz Radiation 
F. Sannibale et al. PRL (93) 094801 (2004) 
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Total radiation of an electron bunch with a population of N, 
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where f() is the Fourier transform  of the normalized longitudinal  
distribution.  



Brief History of Longitudinal Instability  

• Theory 
– Valsov, equation for collective effects, 1945 

– Landau, Landau damping (poles), 1946 

– Neil, Sessler, dispersion relation (coasting beam), 1965   

– Keil, Schnell, instability criterion (coasting beam), 1969 

– Haissinski, equilibrium, nonlinear integral equation, 1973 

– Boussard, instability criterion (bunch beam), 1975 

– Sacherer, mode-coupling (bunch beam), 1977 

– Suzuki, Chin, and Satoh, Gaussian, 1983 

– Oide, Yokoya, incoherent spectrum, Haissinski,1990 

•  Simulation 
– Bane, Zotter, …, Haissinski solver and micro-particle, 1985 

– Warnock and Ellison, robust Haissinski and VFP solver, 2000 
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Coasting Beam Theory 
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Consider a coasting beam with some energy spread. The beam distribution 
function Y(s,z,) satisfies the Vlasov equation  
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W is wake per unit length and positive values of W correspond to the  
energy loss. The distribution function is normalized as 
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nb the number of particles per unit length. 



Linearization of Vlasov Equation 
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Assume an equilibrium distribution function with rms spread , 

and 0=0, F0 is the normalized Gaussian distribution. Consider small  
deviation from the equilibrium, Y=Y0+Y1, = 1. Introduce a dimensionless  
variable p=-/. We have the linearized Vlasov equation 
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Perturbation and Dispersion Relation 
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Consider a perturbation with the wave number k and the frequency , 
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Dispersion Relation 
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where Z(k) impedance per unit length and is F0 is a Gaussian distribution  
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From the linearized Vlasov equation of coasting beam, we derive 

In general, b=/ck, is a complex number and is to be solved. As one can  
see, there is a pole on the real axis. The correct treatment of the pole  
leads to Landau damping. Actually, one can evaluate the integral in the  
upper half plane and then analytically continue it into the lower half plane.  
The correct result of the integral is given 

Beam is unstable if Im[] > 0. 



CSR Wakefield and Impedance  
in Free Space 
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Wakefield due to CSR was given  by Murphy, Krinsky,  and  
Gluckstern  in 1997, 

For z>0. It vanishes when z<0 (force is acting on the electron ahead). 

Impedance was derived by Faltens and Laslett in 1973,  

where  is the bending radius. 
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 It does not depend on energy (universal) 
 but a shorter bunch makes it worse. 



I: beam current 
IA: Alfven current, 17045 A 
: momentum compaction 
: Lorentz factor 
: relative energy spread 
 
 

Microbunching Instability  
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By studying a perturbation 
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Experimental Observation of CSR Instability at ALS 
 (J. Byrd et al, PRL 89, 224801, 2002) 

Coasting beam theory: G. Stupakov 

and S. Heifets, PRST-AB, 5, 054402, 

(2002). 
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CSR with Shielding by Parallel Plates 
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where h is the distance between two plates,  n=k, Ai and Bi are Airy  
functions, and their argument u is defined as 

An impedance with scaling property is given by 

Dependence of n is all through  

In fact, this scaling property holds for the CSR impedance in free space, 
formally 
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Scaling and Asymptotic Properties 

The scale defines the strength of impedance and the location of the peak 
defines where the shielding effects start.  
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Coasting Beam Theory 
for CSR with Parallel Plates 
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Dispersion relation 
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o The threshold is 
        Sth = 6/ 
o first unstable mode is 
        k=5.71/2/h3/2.  

Applying to a bunched beam, the beam is unstable if 
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A scaled current: 

Note it does not depend on . 



CSR in NSLS VUV Ring 
Carr, Kramer, Murphy, Lobo, and Tanner 

Nucl. Instrum. Methods Phys. Res. Sect. A 463, 387-392 (2001) 
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o Bunch length: z = 5 cm. 
o Bending radius:  =1.9 m  
o Full gap: h = 4.2 cm. 
o The shielding parameter:  
       =z

1/2/h3/2 = 8.  

Parameter Measurement Theory 

Threshold 

wavelength 

7.0 mm 6.9 mm 

Threshold 

current 

100 mA 134 mA 

A Comparison with the Measurement 



Synchrotron Oscillation 
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Electrons execute synchrotron oscillation at frequency fs=sfrev. 
The synchrotron tune is given by  

where E0 = mc2 is the beam energy. The equilibrium is a Gaussian  
with a bunch length  

where s=2fs and Vrf is necessary to compensate the energy 
loss U0  
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Longitudinal Beam Dynamics 
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Hamiltonian is given as 

q=z/z,  p=-/ and W(q) is the integrated wake per turn. The  
independent variable is =st. 

Vlasov-Fokker-Planck equation is written as 

where Y(q,p;) is the beam density in the phase space and  =1/sd.  
A robust numerical solver was developed by Warnock and Ellison (2000) . 
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where In is the normalized current introduced by Oide and Yokoya 
(1990) 
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Haissinski Distributions 
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is a static solution of the VFP equation provided that (q) satisfies  
the Haissinski integral equation 

where  S(q) is an integral of W(q) and given as 

head 

o  A scaled current: 
    =In

1/3/z
4/3  

    for CSR in free space 
 
o  The threshold is  
     th =   0.5 as we will  
    see later 



 Generalized Sacherer Integral Equation 
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To study a perturbation near Y0, we expand Y1 as, 

Turn the linearized Valsov equation to  a set of integral equations 
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where the kernel is  
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When Im[] > 0, the beam is unstable. 



Laguerre Polynomial Expansion 

where 
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We decompose  

Laguerre polynomials 

Using the orthogonal-normal condition of the polynomials, we 
reduce the Sacherer integral equation to a set of linear equations 
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Clearly, it is an eigen value problem. /s is the eigen value.  
In fact, M is a real matrix. When current is small, all eigen values  
are real and therefore the beam is stable. It becomes unstable,  
when the first pair of complex eigen value emerge as the current  
increases. 



Matrix Elements 
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The matrix elements are given by 

and  
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One needs to evaluate these integrals for the matrix elements. 



Imaginary Part of Eigen Values  
 

For CSR in free space, we found the threshold th=0.482.  
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Mode Coupling for Quadrupole Modes 
for CSR in Free Space 
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th = 0.5, Y. Cai, PRSTAB 14, 061002 (2011). The same result was obtained also 
with simulations, K. Bane, Y.Cai, and G. Stupakov, PRSTAB 13, 104402 (2010). 



Comparison of Unstable Modes 
for CSR in Free Space 

VFP Simulation , 2=0.0032                             Calculation using 
                                                                     Laguerre polynomials 
                                                              with the highest growth rate        At a higher current, =0.560. 
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Threshold of Instability 
for CSR of Parallel Metal Plates 
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Threshold  th becomes a function of the shielding parameter  =z
1/2/h3/2.  

Simulation was carried out by K.Bane, Y.Cai, and G. Stupakov, PRSTAB 13, 
104402 (2010).  For a long bunch, the coasting beam theory agrees well 
with the VFP simulation. 

A dip seen near z
1/2/h3/2 = 0.25.  

3/2

2/3

23
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
 coasting beam theory: 



Bursting Thresholds at BESSY II and MLS 
Wustefeld et al. IPAC’10 p. 2508 (2010) 

MLS:   Measured thresholds 
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o  This formula was derived from the coasting beam theory developed by Stupakov 
    and Heifets. F = 7.456 is a form factor.  
o  According to Wustefeld, F=7.456, for BESSY II data and F= 3.4 for MLS data  



Threshold of Instability 
Comparing theory with measurement 
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A similar equation can be derived in 
the bunched beam theory  (in MKS 
units) 

(courtesy of M. Klein, th=0.5 used.) 
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Measured bursting threshold at ANKA 
See M.Klein et al. PAC09, 4761 (2009) 

It is nearly the same as the 
formula from the coasting beam 
theory, provided 

3/13/)(4  thF 

But this theory  gives a reason  why  
F varies from machine to machine. 



Summary of the Comparisons 

Machine z 
[mm] 

Radius 
 [m] 

Gap h 
[cm] 

  th  

(theory) 
th 

(meas.) 

BESSY II 2.6 4.23 5.0 0.48 0.67 0.89 

MLS 2.6 1.53 5.0 0.29 0.60 0.39 

ANKA 1.0 5.56 3.2 0.42 0.64 0.50 

SSRL 1.0 8.14 3.4 0.46 0.66 ? 

Diamond 0.7 7.13 3.8 0.25 0.17 ? 0.33 
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 34.05.0)( th
We have used  

where  = z
1/2/h3/2 is the shielding parameter. This simple relation 

was first obtained by fitting to the result of simulations (K. Bane,  
Y. Cai, and G. Stupakov, PRSTAB 13, 104402 (2010)).  
 
Since the MLS’s shielding parameter is very close to the dip. That  
may be a reason of its lower threshold. 



Conclusion 
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1) For a long bunch,  = z
1/2/h3/2 > 2, the coasting beam theory works well.  

     The beam becomes unstable when  
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2 ) When a bunch is short,  < 2, the bunched beam theory should 
     be applied. The beam becomes unstable if   

A shorter bunch is always more unstable. However, it is much better  
to reduce the bunch length with an increase of RF voltage than with 
a decrease of the momentum compaction factor.  

3) Avoid the dip near   = 0.25.  



Reduce Bunch Length from 10 ps to 1 ps 
without reducing bunch current 

o For a high energy collider, it 
means a potential increase of 

       luminosity by a factor of 10. 

o For a synchrotron light 
source, this is a factor of 10 
increase in time resolution. 
Also, a factor of 10 increase 
of peak current, may enable 
an XFEL oscillator. 

o For a THz radiation source, 

       this gives a potential gain of  
104/4, comparing to the low  
approach. 
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Calculation of threshold  

An illustration using PEP-X  
nominal parameters: frf = 476  
MHz, Vrf=8.3 MV, frev = 136.312 
kHz, z=3 mm, Ib=0.067 mA. 
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