EU ILC-HiGrade plans and beyond

E.Elsen

Períod: 2011-2014

Remarks on Notation and Funding

- 800 cavities purchased by European XFEL GmbH
- EC project ILC-HiGrade will end January 31, 2012
 - 24 high-gradient cavities
- EC project CRISP begins in October 2011
 - Quality assurance for XFEL cavities
 - Understanding of gradient limitations for ILC
- Helmholtz Accelerator R&D program (ARD) started 2012 and continues till 2014 to prepare transition into Helmholtz base program
- AvH funds of B Foster will partially support SRF R&D

Talk touches aspects of all these programs

Synergies with the European XFEL

- 800 cavities will be RF tested in the AMTF vertical test stands
 - want to profit from the large statistics of industrially mass-produced cavities (built to spec)
 - understand the failures of cavities and remove limitations
 - 24 ILC-HiGrade cavities will be optimized
- 100 cryomodules will arrive at DESY and will be high-power tested
 - understand limitations and gradient variations

This will be the main effort 2012-14

Beyond the base programme

- Primary interest of DESY is in cw operation
 - Initial test of mixed-mode operation, i.e. pulsed and cw
 - 80 kW IOTs (300 ms and cw)
 - 5.5 MV/m cw and 11 MV/m pulsed
 - Stability 10⁻³
 - LLRF challenge
 - Cavity Q₀ is most relevant for cw-operation

Develop high Q_0 -cavities (and consequently high) E_{acc})

Further options of cavity development

- Hydroforming of cavities has proven to be effective in shaping cavities
 - too late to be qualified for European XFEL
- Single crystals
 - would like to continue initial program
 9-cell cavities

recommission tumbling machine?

Increasing rf-breakdown field of SRF cavities by multi-layer coating

- Thin multilayer coating (SISI)
 - layer thickness below London penetration depth
 - Thin layer to retain superconducting state beyond critical B-field
 - Fine tuning of layer important to avoid Josephon junction accross layers
- Requires single crystal
 - to avoid flux-penetration at crystal boundaries

Plans are slowly taking shape taking

Summary

 DESY will focus on proper handling of the 800+ cavities for the European XFEL

High statistics

 Future laboratory interest is primarily focused on cw-operation

Qo

- single crystal cavities
- hydroforming
- Systematic studies of gradient limitation

Material and surface science