

Qualification of and adjustment solution for CLIC active pre-alignment on test modules

on behalf of the CLIC active pre-alignment team

2011.09.29, AWG7 + AWG8

- Alignment philosophy
- Alignment requirements
- Actuators tests
- Adjustment solution and TM0 tests results
- Summary

Alignment philosophy

R

R

Р

R

R

Р

Mateusz Sosin

Alignment requirements

Accelerating Structure Alignment

PRE-ALIGNMENT

Ref.	1	Inherent accuracy of reference	10 µm	10
Ref. to cradle	2	Sensor accuracy and electronics (reading error, noise,)	5 μm	10
	3	Link sensor/cradle (supporting plates, interchangeability)	5 μm	10
Cradle to girder	4	Link cradle/girder	<mark>5</mark> μm	1σ
Girder to AS	5a 5b	Link girder/acc. structure Inherent precision of structure	5 µm	1 σ
		TOTAL	14 µm	1σ
		Tolerance	40 µm	30

To provide proper adjustment

- Elements machined w.r.t. defined tolerances
- Whole elements fiducialized (accurately and precisely known geometry of cradle-girdercradle and w.r.t. cradle of next girder)
- High resolution precise actuators

Misalignment of the girder to structure center

Actuators

- ✓ Good repeatibility (<1µm)
- Resolution below 0.5µm
- No loss of steps, no (or minimal

and known) hysteresis

- ✓ High stiffness & linearity
- Stroke +/-3mm

Mateusz Sosin

Actuators tests

- Only ZTS tested completely at special developed test bench
- MICROCONTROLE tested only at TM0

- Two types of actuators used at TMO
 - MICROCONTROLE
 - ZTS VVU Kosice Slovakia
 - Both construction using ball screws based mechanisms
 - Very high precision of machining requested to suppliers

Mateusz Sosin

Actuators tests – test bench

- Special test bench developed:
 - Possibility to 800kg load applying
 - Adjustable load
 - ✓ PUSHING and PULLING configuration
 - Hysteresis/backlash, repeatibility, linearity, stiffness measurements

Mateusz Sosin

Actuator tests - results

- Microcontrole actuators tested only at TM0
 - Max. backlash 2µm
 - Resolution below 0.2µm

- All full-range characteristics taken for ZTS actuatros
 - Max. nonlinearity 3µm (at +/-3mm range)
 - Max. hysteresis 4µm (at full 650kg load)
 - Resolution below 0.2µm
 - ✓ Repeatibility 1..1.5µm
 - Characteristics ready to use in control system as calibration curves if needed

Mateusz Sosin

- Control system for TM0
 - X-Y measurement by WPS sensors
 - Tilt measurements by precision dual axis inclinometers
 - Software LabView based (handling data acq., visualization & control algorithms

Two T0 modules at CERN lab

- Drive beam: BOOSTEC girders solution + ZTS actuators
- Main beam: MICROCONTROLE girders solution + MICROCONTROLE actuators

Mateusz Sosin

Actuators parameters measurements in TM0 (in range +/- 1mm, relative displacements)

- For ZTS actuators TM0 tests confirmed values obtained at previous (test bench) tests
- MICROCONTROLE actuators parameters were measured:
 - Resolution : less than 0.2 micron
 - Max. Backlash: 2μm
 - Good repeatibility within 2μm

Mateusz Sosin

Master<->Slave articulation point validation

- Relative transversal & vertical displacements confirmed same translations on connected master and slave cradles (SLAVE cradle is following the MASTER)
- Displacements of one master-slave pair not affect for position of neighbouring cradles
- No cradle rotation during parallel driving of vertical actuators

Vertical cradles displacements for BOOSTEC

16 05 Temps (HH MM)

By Vivien Rude, CERN, BE-ABP-SU

Mateusz Sosin

Data used for 3DOF cradle alignment:

- Cradle & girder geomerty w.r.t. beam axis (project definition & measurements)
- ✓ Last actuator & flexible joints vectors positions (known pos. & param.)
- Beam position w.r.t reference wire (sensor calibration & sensor-support/cradle fiducialization based)
- Tilt (sensor calibration & sensor-support/cradle fiducialization based)

Mateusz Sosin

Regulation

- Proportional method based on fiducialization and sensors calibration data
- Tests only for relative displacements absolute sensors calibrations pending
- \checkmark Tests in noisy area standard deviation of WPS measuremets within ~1.3 μ m
- Regulation results confirm Set Point tracking within noise of the WPS sensor

Regulation

- Best possible quaility of regulation to be checked after improving sensors performance
- ✓ Regulation anglorithm checked & works fine within +/-1.3µm sensor noise
- ✓ Quality of regulation achieved for big displacement of +/-1mm

Mateusz Sosin

Summary

What was done:

- Conception of Master-Slave based structures adjustment checked and gives promising results for future
- Closed loop regulation now only for relative displacements show that adjustment of cradles is feasible within specified precision

Future works:

- Validate the fiducialisation strategy on the two beam modules prototypes as well as short range pre-alignment. We are still learning new things linked with absolute measurements
- Improve the performance of different sensors, perform their qualification and perform qualification of regulation based on that sensors feedback