

Little Higgs with T-parity measurements at the ILC

LCWS11

Tohoku Univ. Eriko Kato

M. Asano, K. Fujii, R. Sasaki, T. Kusano S. Matsumoto, Y. Takubo ,H. Yamamoto

Little Higgs model

There are 2 predictions on where the energy scale of new physics should emerge.

2.Electroweak precision measurement

- Conflict between the 2 energy scales.
- Little Higgs model was proposed!

Λ>10Te

Little Higgs model

<Little Higgs mechanism>

Global Symmetry : SU(5) $f \sim 1 \text{ TeV}$ SO(5) $v \sim \langle h \rangle$ subgroup : $[SU(2)_L \times U(1)_Y]^2 \longrightarrow SU(2)_L \times U(1)_Y \longrightarrow U(1)_Y$

<Higgs mass contribution>

Quadratic divergent terms cancel at 1-loop order

<features of Little Higgs>

- prediction of top partner
 prediction of gauge boson partner
- Definite relation between model parameters

(little higgs mechanism)

Solves Little hierarchy problem

Littlest Higgs with T-Parity model

LHT masses in gauge & lepton sector can be described in 2 parameters f(VEV): energy scale of global symmetry breaking K : lepton Yukawa coupling

Important parameters which describe how LHT particles obtain masses & solve little hierarchy problem.

Aim of study

Evaluate ILC's sensitivity on ...

- 1st aim : extracting model parameters(f&kappa)
- 2nd aim: completing the mass spectrum and checking consistency with parameters
- 3rd aim: meas. coupling check consistency with parameters

Strong proof that discovered particles are indeed LHT.

					ADCOLU	- ^
	К	f		LHC-	T_	- 0
	0.5	580(GeV)	-		Ф Wu Zu	∎ <mark>0</mark> ∎ _H ,
			-	0 (v) ₅₀₀ Ge		
E	_m =1TeV,			higgs	A_{H}	
Luminocity = 50010^{-1}			100 GeV			-1
			Stand	lard model litt		001

Analysis

Analysis procedure

1. T-Parity new particles are produced in pairs

2.

- produced new particles decay into SM and LHT particles.
- 3. Extract LHT mass information by recognizing end point of SM energy.
- Extract model parameters, using the fact that LHT masses are expressed with them.

Mass/parameter measurement accuracy For details, ILD work shop talk

results show that ILC is capable of highly accurate precision measurements on LHT masses and parameters.

parameter

0.5

Κ

- \succ This is extremely important in study
- -ing LHT's mass generation mechanism.
- \succ Shows how likely it is actually it is LHT.

particle	mass	sensitivity
A _H	81.9(GeV)	1.3%
W _H	369(GeV)	0.20%
Z _H	368(GeV)	0.56%
e _H	410(GeV)	0.46%
V _H	400(GeV)	0.10%

Coupling relationship

 It will be extremely important to measure couplings between LHT particles and SM particles in order to know how particles interact with each other.

Coupling relationship

 With the method I am going to introduce we can derive the couplings In the vertices shown above.

Input coupling

Derived coupling

Observables for coupling extraction

Cross section

- Assume W_{H} , Z_{H} decays 100% to A_{H}
- Derive coupling

However....

Ex)

We don't know Br of particles which have several decay modes.

We need an additional observable.

 \times Vertex structure(spin, ratio between Left right coupling) will be assumed

Observables for coupling extraction

Input coupling

Derived coupling

- Differential cross section
 - We know masses of LHT particles.
 - Angular distribution of pair produced LHT particle can be derived by solving kinematics.
 - Derive coupling from angular distribution
 - Coupling sign can also be derived (s-channel contribution destructive/ constructive)

XVertex structure(spin, ratio between Left right coupling) will

Deriving coupling

Cross section meas.

• Fit standard energy distribution used before and measure cross section

Cross section measurement

Mode		vertex		Xsec Meas. accuracy	Coupling meas. Accuracy
$A_H Z_H$	C1		e e _H A _H	7.70%	3.90%
$Z_H^{}Z_H^{}$	C2	$e - e_H Z_H$	~ <i>V</i> o	0.859%	0.219%
e _H e _H	C3			2.72%	1.49%
$v_{H}v_{H}$	C4	$e_{W_{H}} v_{eH}$	VVH C	0.949%	0.648%
W _H W _H	c5		$e \qquad v_H W_H$	0.401%	0.174%
Contour of Meas. Coupling 0.325 0.470 0.263 0.700 0.263 1σ 0.0243 0.0266 0.0288 10.0308 1σ Center value of the coupling of estimated using the previousl parameter f & kappa.					

Summary/plan

- High precision in parameter extraction , mass measurement & coupling extraction through cross section meas. is possible. Which is extremely important in verifying the LHT.
- All of the other couplings will be derived using template fitting of decay angle distribution.

particle mass		se	sensitivity		
A _H	81.9(GeV)		1.	1.3%	
W _H	369(GeV)		0.	0.20%	
Z _H	368(GeV)		0.	0.56%	
е _н	41	L0(GeV)	0.	46%	
ν _H	40	00(GeV)	0.	10%	
parameter		True valu	le	Measure	m
f		580(GeV)	0.16%	
К		0.5		0.01%	

Coupling extracted from xsec			
Mode	Coupling meas. Accuracy		
A _H Z _H	3.90%		
Z _H Z _H	0.219%		
e _H e _H	1.49%		
ν _H ν _H	0.648%		
W _H W _H	0.174%		