Integrated Luminosity simulation with respect to ground motion

Jochem Snuverink
$29^{\text {th }}$ of September 2011

- Introduction
- Dynamic imperfections due to ground motion
- pulse to pulse
- long term
- Conclusions

Ground motion

Main dynamic cause for luminosity loss Slowly drifting element positions Short time scales (< 10-60 s)

- A. Seryi models (see figure) Long time scales
- ATL law:
- $<(\Delta y) 2>=A^{*} t^{\star} L$

Value of A is highly dependent on site and measurements Here value for LEP tunnel is taken,

Micro-seismic peak but this value varies up to factor 5 .

Counter-measures

Pulse to pulse motion

- Presented on Tuesday
- Model A:
no stab. needed
- Model B: needs FD stab.
- Model B10 or worse: needs quad stab.

Averaged over 20 seeds

BPM resolution

Impact of BPM resolution

No ground motion, only BPM errors
Required BPM resolution in BDS 50 nm (baseline) for a few \% loss Improved result due to noise-robust beam based feedback

- Let's assume we have aligned/tuned CLIC to reach the nominal machine
- How to stay maintain luminosity for long time scales? (> 1 hour)
- The beamline is a living object
- And how to simulate this?
- simulation: 2 * 1 train ML+BDS + collision: ~1 minute
- 1 hour beamtime = 180.000 train collisions = 100 days simulation time
- Start with nominal beamlines (ML+BDS):
- Apply 50s of ATL motion to the beam
- Apply Beam Based Feedback for 80 iterations (and no dynamic imperfections), in reality 25.000 iterations
- Pessimistic case, but not possible to track each pulse
- After about half an hour: 5-10\% lumi loss
- Lumi loss not (primarily) caused by emittance growth
- Degradation of the beam shape

FFS Knobs

- Last 5 Sextupoles of Final Focus (SF6, SF5, SD4, SF1, SD0)
- Changing their x and y position changes the beam shape.
- Two sets of orthogonal knobs
- Orthogonal: "not necessary to retune"
- 10 knobs, $x-y$ separated, based on SVD, produced by E. Marin with MAPCLASS
- 10 knobs, $x-y$ mixed, based on SVD, not directly corresponding to traditional beam parameters, produced by A. Latina
- Here A. Latina's knobs are used

Knobs Calculation

$$
\begin{aligned}
& \Sigma=\left(\begin{array}{cccccc}
\sigma_{x x} & \sigma_{x x^{\prime}} & \sigma_{x y} & \sigma_{x y^{\prime}} & \sigma_{x z} & \sigma_{x \delta} \\
\sigma_{x^{\prime} x} & \sigma_{x^{\prime 2}} & \sigma_{x^{\prime} y} & \sigma_{x^{\prime} y^{\prime}} & \sigma_{x^{\prime} z} & \sigma_{x^{\prime} \delta} \\
\sigma_{y x} & \sigma_{y x^{\prime}} & \sigma_{y^{2}} & \sigma_{y y^{\prime}} & \sigma_{y z} & \sigma_{y \delta} \\
\sigma_{y^{\prime} x} & \sigma_{y^{\prime} x^{\prime}} & \sigma_{y^{\prime} y} & \sigma_{y^{\prime 2}} & \sigma_{y^{\prime} z} & \sigma_{y^{\prime} \delta} \\
\sigma_{z x} & \sigma_{z x^{\prime}} & \sigma_{z y} & \sigma_{z y^{\prime}} & \sigma_{z^{2}} & \sigma_{z \delta} \\
\sigma_{\delta x} & \sigma_{\delta x^{\prime}} & \sigma_{\delta y} & \sigma_{\delta y^{\prime}} & \sigma_{\delta z^{\prime}} & \sigma_{\delta^{2}}
\end{array}\right) \\
& \text { Sigma }=\frac{\Sigma}{\Sigma_{0}} \\
& K=\overbrace{\left(\begin{array}{ccccccc}
\sigma_{x x} & \sigma_{x x^{\prime}} & \sigma_{x y} & \sigma_{x y^{\prime}} & \sigma_{x z} & \sigma_{x \delta} & \cdots \\
\sigma_{\delta^{2}} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]}^{21 \text { columns }} \\
& \begin{array}{c}
\text { knob }=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right) \\
U^{T} S V=\operatorname{svd}(\text { Sigma })
\end{array}
\end{aligned}
$$

- K has 21 columns (from Sigma) and 10 rows (each degree of freedom, (x, y) position $\times 5$ sextupoles)
- The knobs are the columns of the matrix V

ATL + FFS Knobs

- Apply FFS Knobs after ATL simulation

- B. Dalena CLIC meeting:
- Knob tuning $O(250)$ luminosity measurements
- < 1s for each luminosity measurement: see B. Dalena's presentation in this session

ATL simulation: Main Linac

- Study done by B. Dalena

1. Perfect BDS
2. Static misalign. ML
3. BBA
4. ATL motion
5. 1-1 correction
6. IP correction

- After 10^{5} s (=1 day) about 5-10\% lumi loss
- Luminosity loss due to emittance growth

IPAC10 paper
Also studied in PAC09 paper

Conclusions / Outlook

- Ground motion simulations have been presented
- Pulse to pulse simulations look to be in good shape
- After about an hour additional BDS tuning to be performed
- After about a day additional ML tuning to be performed
- In practice tuning-information would be gathered continuously
- to be studied

