Summary Summary

Vertexing & Tracking (R&D 7)

- Tuesday (R&D 7): Sensors + Simulation
 - ➔ FPCCD sensors + ASICS: Y. Sugimoto, E. Kato
 - → DEPFET: L. Andricek + G. Timón
 - ➤ CMOS Pixel detectors: M. Winter
 - → Chronopixels: N. Sinev
 - → Novel 2D silicon strip detector: F. Muñoz
 - ➔ Geiger Mode APDs: E. Vilella
 - → Large Area Si Tracking: A. Savoy-Navarro
 - ➔ Tracking at UCSC/SCIPP: B. Schumm
 - → Background studies for Vertex and Forward Tracking: J. Trenado.
 - → Tracking performance in CLIC_ILD + CLIC_SiD: M. Hauschild
- Thursday (R&D 7): Engineering, system issues
 - → Single and Double-sided ladders for ILD vertex: M. Winter
 - → CLIC Vertex detector Mechanics: W. Cooper
 - ➔ Air cooling studies for Vertex Detectors: A. Oyanguren
 - → Structural and Environmental Monitoring of Tracker and Vertex sensors using FOS: D. Moya

Very impressive work. Impossible to make a summary in 12 minutes. A personal selection...

Vertex Sensors

CMOS Pixel Sensors established architecture. EUDET Beam Telescope

DEPFET Integrated silicon frame

- 2 sensor types struggling to be ready for starting experiments ~
 - → (CPS @ Star 2012 and
 - DEPFET @ Belle II 2015) →
 - Both have been successfully tested with thin sensors (50 um) →
- FPCCD getting ready with some problems with pixel sizes of 6um, ~ but performing well with bigger pixel sizes
 - → Thinning down to 50um OK on prototypes
- Chronopixels had problems with first prototype. Second prototype should ~ be ready by end of 2011
- Still some room for "innovation" 1
 - ➔ Geiger APDs

Silicon Tracking and Vertexing – LCWS11

Tracking

✓ Single sided AC-coupled Si micro strips with Resistive coupling

Local supports: DEPFET

- DEPFET: does not need it since it has the integrated silicon frame
- ✓ Can join 2 "half" ladders

- reinforced with 3 ceramic inserts
- 2x300µm dead area per ladder
- □ mechanical tests → remarkably robust!!
- bowing: up to 1 mm sagitta (over 10 cm)
- tension: 40 to 60 N, then the Si broke

Local Supports: CMOS Pixel Sensors

- Ultra-light double-sided ladder : PLUME project
 - x Pixelised Ladder using Ultra-light Material Embedding
 - x Objectives :
 - demonstrate feasibility of 2-sided ladder (0.3 % X0) for the ILD vertex detector by 2012 (DBD)
 - evaluate benefits of 2-sided concept : σ_{sp}, redundancy, alignment, shallow angle pointing, elongated⊕square pixels
 - x Collaboration : Bristol DESY Oxford Strasbourg
- Unsupported single-sided ladder : SERNWIETE project
 - x SEnsor Row Neatly Wrapped In an Extra-Thin Envelope
 - x Objectives :
 - → demonstrate feasibility of unsupported concept (≤0.15 % X0)
 - ➔ for the ILD vertex detector by 2012 (DBD)
 - evaluate thermo-mechanical properties : system integration, curved supports
 - Context : EU project Had. Phys. 2 (coll. with Univ. Frankfurt & CERN)

2 Functional ladders produced. Tests show that noise is as single sensors.

Vertex mechanics

- ✓ Still nothing defined from endplates (barrel, let alone endcaps) to the outside world
 - ➔ No service routing
 - ➔ No location of patch panels
 - →
- A talk of CLIC Vtx mechanics reminded us issues still to be done and highlighted the studies already done.

Considerations

- At least twelve factors should be considered in the vertex detector mechanical design:
 - Vertex detector geometry
 - Integration with the beam pipe
 - Integration with the tracker and other sub-detectors
 - Ease of fabrication and assembly
 - Sensor tiling
 - Precision of assembly
 - Stability of support
 - Heat removal
 - Material contributions
 - Power delivery
 - Cabling
 - Servicing
- Only a few of these considerations will be discussed in this talk.
- However, linkages exist among many of them and should not be forgotten or neglected.

Silicon Tracking and Vertexing – LCWS11

Air cooling

- Test made with thin DEPFET modules in V Belle II "configuration"
 - → End supports cooled with CO2
 - Cold air flows through channels in supports →
- Message valid for ILC/CLIC: 1
 - ➤ Convection helps. Do not need very high mass flows: just movement.
 - → How to cool down the air and bring it to the system
- To be done: vibrations V

Silicon Tracking and Vertexing – LCWS11

Structural & Environmental monitoring

- Fiber Optic Sensors an interesting monitoring tool
- Tests made at previous setup give encouraging results

1550.463 30% 1550.453 25% 1550.443 20% HUMIDITY 1550,433 - Termohiar. 15% 1550.423 FBG 10% 1550.413 5% 1550, 403 WAVELENGTH (nm) 0% 1550,393 11:52 TIME 11:31 11:38 11:45 12:00 12:07 12:14

Humidity measurement

Strain Measurement

Temperature measurement

D.Moya, Tracking-Vertex session, Granada Sept. 29th 2010

Silicon Tracking and Vertexing – LCWS11

Conclusions

- ✓ A personal selection of highlights shown.
- They give an idea of the impressive work made towards a real system.
- The fact that some Vtx technologies are getting ready for other experiments helps in analyzing the details and problems we may find "beyond the sensor"
- All these efforts are supported by simulation work which has not been show here (see the talks at the R&D 7 sessions)