# ILC Electronics Manufacturing Opportunities 

Linear Collider Industrial Forum of
America (LFCOA)
SLAC, May 1-2, 2006
Ray Larsen

## Outline

- I. Power Electronics
- Modulators (Manufacturing Models)
- Power Supplies
- II. Controls \& Instrumentation
- III. Laser Systems


## Subsystem Relative Costs (From us study)

| $\square$ CF | $\square$ Struct | $\square$ RF | $\square$ SysEng | $\square$ InstTest $\quad \square$ Mag/PS |
| :--- | :--- | :--- | :--- | :--- |
| $\square$ Vac | $\square$ Controls | $\square$ Cryo | $\square$ Ops | $\square$ Instrmnts |



May 1, 2006

## I. Power Electronics

- Modulators
- Total Qty ~ 700; Est. Cost ~4\% TPC
- Baseline: TESLA/FNAL.
- Alternates: Marx (in R\&D \& 3 Phase I SBIRs); SNS-LANL; DTI Direct Switch (prototype due at SLAC early '07)
- Goal: Evaluate ACD’s, down-select by June 2007.
- Power Supplies
- Total Qty all types ~20,000; Est. Cost ~2\% TPC?? (USLCOS est.)
- Baseline: New modular n/N designs for high availability
- Note: All electronics designed for high systems availability (up-time)


## Manufacturing Comparison

- TESLA Baseline Design:
- Large capacitor banks in cabinets, point-to-point interconnects, separate charging source at 10KV DC, separate redundant discharge switch, separate oil-filled step-up transformer. Total of each unit $\sim 700$.
- Preferred:
- Contract build-to-spec or build-to-print \& deliver 700 fully tested units; schedule to install with minimal further testing; provide testers to mfgrs.
- Alternate:
- Subcontract major subassemblies \& factory testing; assemble full units \& test onsite. More on-site storage, test facilities required.
- MARX ACD
- 14 identical modules/unit, 2 power converter modules
- Total boards $=9,800$ for 700 units
- 60\% Parts cost in IGBT switch sub-modules

- Total IGBT sub-modules =10 per module, 98,000 for 700 units
- Mounts in sealed box with air-water heat exchanger
- Preferred:

- Contract for fully assembled factory tested units; provide testers to mfgrs.
- Alternate:
- Subcontract all subassemblies to PC board industry; subcontract board testing; final assembly in enclosure \& testing on site. More storage; test space on site.


## Power Supplies

- Total Quantities
- LGPS 1/n redundant supplies: ~9000 (>1kW-multi kW)
- Modular n-channel supplies: ~10,000 channels
- Cryogenic modular supplies: ~1600
- High Availability
- 1/n Modular Designs where PS module failure will not interrupt machine; ideally hot swap to repair while running.
- Apply to:
- KW to 100KW single load or magnet string supplies
- Multi-channel Corrector supplies
- Cryogenic magnet supplies
- Prototype Tests
- Commercial modules successfully tested in 3/4 and 4/5 designs; hot swap feasible
- Dual controller shown to be needed for 99\% full ILC system availability
- Goals for '07-08
- Demonstrate technical feasibility, cost viability full prototype w/ redundant sub-modules, bulk, controllers.
- Demonstrate 40-unit basic system at ATF2.


## HA PS Concepts - Quads, Correctors, LGPS



## System Configuration



- N/n Modular PS
- Dual Controllers
- Dual Bulks
- Ethernet IO Star
- All Hot swappable


## PS Manufacturing

- Assume $1 / \mathrm{N}$ modular redundant supplies for any unit that would stop operation
- Main Linac
- Cold Quads, Correctors every 36m
- Current sources of $\sim 30-100 \mathrm{~A}$ @ few volts
- Small low power dissipation units wl quench protection
- Injectors, Damping Rings, Beam Delivery
- Warm magnets, higher power quads \& correctors, many low power units in positron transport line \& Beam Delivery areas
- Total numbers (approx.)
- Modular supplies 9,000
- Dual bulk supplies 2,250
- Dual Controllers 18,000
- Sub-modules
- Diagnostic cards/hybrids

36-45,000 (3 of 4, 4 of 5)

- Dual Corrector channels
- Dual Corrector channels 10,000
- Manufacturing
- Purchase all supplies, controllers to specification or to print.
- Contract rack systems, acceptance tested at factory


## II. Controls \& Instruments Architecture



## Low Level RF System BD (36m)



May 1, 2006

## ILC Linac Instrumentation (36m)



## ML Controls \& LLRF Parts List

- Main Linac + Injection + RTML (18,000 SRF Cavities)
- Instrument \& Power Support Racks (8/Sta) 4,800
- Controls Sector Node Crates: 700
- Central Control \& Other Area Crates: 300
- Beam position XY channels: 700
- Low Level RF Crates: 1,400
- LLRF Modules (2 10-brd crates/Kly.) 48,000
- LLRF Sub-Modules, 4/brd 192,000
- Vacuum pump drivers: 4,200
- Cryo magnet channels: 2,100
- Tuner motors \& drivers: 54,000
- Piezo tuners \& drivers: 36,000
- Networks 1,400
- Dual Star Gigabit Ethernet 700
- Dual Star timing \& trigger reference 700
- Etc.
- Manufacturing Model
- Commercial racks, crates, IOC computers, switches, industrial drivers May 1,2006 strumentation modules - build to specs/print all high quantities


## Controls \& Instruments Manufacturing

- Controls \& Instruments Est. 4+2.5=6.5\% of TPC.
- Controls
- Propose all controls on HA platform.
- Commercial open standard ATCA under study as candidate.
- Modules, hardware, base software - COTS and commercial contracts from standard suppliers.
- Custom design necessary for some data switching, fast timing modules; commercial manufacture.
- Total modules est. ~4,000
- Ethernet \& Timing fiber plants substantial cost item.
- HA software engineering major cost
- Instrumentation
- New Serial Communications Standard Packaging system required.
- Use ATCA HA packaging concepts where cost-viable
- Some custom design necessary
- Assume no electronics in beam tunnel, prefab cable plant from industry.


## |||. Laser Systems [A. Brachmann, M. Ross]

- 1. Source Lasers
- Basic challenge: Amplification of a 3 MHZ pulse train to $\mu \mathrm{J}$ levels.
- Initial laser system based on Ti:Sapphire (wavelength driven by bandgap of GaAs photocathodes).
- Future source upgrades will require other amplifier medium (driven by photocathode development, e.g. Laser systems in the 400 nm wavelength range for GaN based photocathode's).
- Multiple laser systems needed for multiple sources and source/photocathode R\&D
- 2. Diagnostics Laser Systems
- Example laser wires: Similar pulse train structure as source, UV wavelengths desired for small spot-size measurements.
- Average power requirements are MW - GW and pico-second micropulses.
- 3. Anticipated average cost per laser system is $500 \mathrm{k} \$-1 \mathrm{M} \$$
- Approx 16 diagnostic laser systems, 25 total high power laser systems in ILC (M. Ross)

