Hybrid QD0 Studies

M. Modena CERN

Acknowledgments: CERN TE-MSC CLIC Magnets Study Team: A.Aloev, E. Solodko, P.Thonet, A.Vorozhtsov

Outline:

1) CLIC QD0 status

2) A hybrid QD0 for ILC ? (basic conceptual design)

CLIC QDO (3 TeV; L*=3.5 m) typical layout

Michele Modena, CERN

CLiC QD0 design in one slide

CLIC QD0 Main		100mm	Real magnet 2.7m	
Parameters	prototype		Real magnet 2.7 m	
Yoke				
Yoke length	[m]	0.1	2.7	
Coil				
Conductor size	[mm]	4×4	4×4	
Number of turns per coil		18×18=324	18×18=324	
Average turn length	[m]	0.586	5.786	
Total conductor	[]	0.586×224×4-760	5 786 22 4 24-7500	
length/magnet	[[m]	0.386×324×4-760	3.780×324×4-7300	
Total conductor mass/magnet	[kg]	26.8×4=107.2	265.2×4=1060.8	
Electrical parameters				
Ampere turns per pole	[A]	5000	5000	
Current	[A]	15.432	15.432	
Current density	[A/mm ²]	1	1	
Total resistance	[mOhm]	896	8836	
Voltage		13.8	136.4	
Power	[kW]	0.213	2.1	

Michele Modena, CERN

- A short QD0 prototype (for CLiC 3TeV layout) was built at CERN in 2010-2011.
- Objective: validate the Hybrid Magnet design proposed:
 PM blocks Permendur core structure coils for tunability (low current density).
- **Two** campaign of measurements were done in 2012 in two different configuration:

- QD0 equipped with Nd₂Fe₁₄B_blocks (measured in January 2012)
- QD0 equipped with Sm₂Co₁₇ blocks (measured in August 2012).
- "Vibrating Wire" MM method was used (the only available due to the small magnet radius).

Value
575 T/m
547(NdFeB); 503(SmCo) T/m
2.73 m
7.6 mm
8.25 mm
1 mm
< 0.1%
+0 to -20%

CLiC QD0 Status

6

COMPUTED Gradient (blue curves) and MEASURED Gradient (red dots) (extrapolated from the INTEGRATED GRADIENT effectively measured), with **Sm₂Co₁₇** blocks (on the left: 504 T/m) and **Nd₂Fe₁₄B** blocks (on the right : 514 T/m).

CLiC QD0 Status

Prototype FIELD QUALITY (given as magnetic harmonic content, multipoles) versus the magnet powering: Nd₂Fe₁₄B (upper graph), Sm₂Co₁₇ (lover graph).

NOTE: the first "permitted" mutipole is b6: at NI=5000A we compute b6=1.4 units (NdFeB) and b6=0.7 units (SmCo).

Michele Modena, CERN

Field quality tuning: ex. SD0

Opt.1 S-grad 222 020 T/m²

Opt.2 S-grad 220 349 T/m²

Opt.3 S-grad 221 247 T/m²

Outline:

1) CLIC QD0 status

2) A hybrid QD0 for ILC ? (basic conceptual design)

ESRF

A hybrid QD0 for ILC ?

State of the art

A light for Science

CLIC final focusing

- Iron dominated, Coils + PM
- Gradient 525 T/m
- Aperture 8.25 mm
- Tuning range 80 %

European Synchrotron Radiation Facility

G. Le Bec - Magnet studies

ESRI

State of the art

A Light for Science

ILC final focusing

- PM
- Gradient 120 T/m
- Aperture 20 mm
- Tuning by 7 T/m steps

Basic ILC QD0 parameters (R. Tomas Garcia: private communication, 8 May 2013):

- Crossing angle: 14 mrad
- L* = 3.5 m
- QD0 full aperture: 2 cm
- QD0 total length: 2.2 m
- QD0 gradient: 124 T/m
- Post Collision Line vacuum pipe radius at 3.5 m: ~ 12.5 mm

Examples of the optimization done on 3 parameters ($\alpha_{in}, \alpha_{out}, \uparrow_{easy dir;}$) (*R* out=30 mm). The sets of values that maximize field quality are 32° for both $\alpha_{in}, \alpha_{out}$, and 55° for the easy dir. (1st Table)

outer angle	inner angle	easy direction	Gradient, T/m	b6, units	b10, units	b14, units	b18, units	abs(b6)
32	32	55	-125.6883919	-0.018011928	0.021495857	0.001156133	-5.42639E-06	0.018011928
14	33	37	-109.7656866	0.035278019	0.020945055	0.000970438	-1.71047E-06	0.035278019
28	28	32	-128.8464878	-0.069765144	-0.102218168	0.001223987	7.28026E-06	0.069765144

outer angle	inner angle	easy direction	Gradient, T/m	b6, units	b10, units	b14, units	b18, units
33	13	32	-142.2927103	40.41430891	0.020803327	0.001981567	-0.000987569
33	13	34	-142.2817507	40.80280099	0.024709188	0.002024723	-0.000996354
33	12	30	-142.2787609	41.64605989	0.039128861	-0.002075543	0.000436098

A hybrid QD0 for ILC ?

We have tried to "scale" our QD0 design taking into account the geometric condition but also starting an optimization of the main parameter toward a wider field quality range for the asked tunability.

(thanks to A. Aloev for the FEA calculation!).

"red line" inside the aperture: area where $\Delta G/G \leq 1$ unit (good field region)

NI	Α	0	1250	2500	3750	5000	6250	7500	10000	20000	40000
Gradient	T/m	34.7	42.8	67.8	97.3	125.7	145.8	152.2	160.6	169.4	174.9
b6		61.2472	45.2059	19.9428	6.8605	-0.0183	-3.3895	-4.2944	-5.3982	-6.4427	-7.0075
b10	unite	0.1978	0.1510	0.0769	0.0386	0.0215	0.0173	0.0173	0.0182	0.0201	0.0217
b14	units	0.000192	4.51E-04	8.62E-04	1.07E-03	1.16E-03	1.16E-03	0.001148	0.001123	0.001086	0.001056
b18		0.003501	2.58E-03	1.14E-03	3.89E-04	-4.59E-06	-1.98E-04	-0.00025	-0.00031	-0.00037	-0.0004

Main multipoles estimation at r = 3 mm; 5000 NI is the nominal working point (G:125 T/m)

A hybrid QD0 for ILC ?

In this slide the MAXIMUM GRADIENT configuration (~ 142 T/m) Poles are wider, saturation appear in some areas, field quality is deeply affected (even in these <u>IDEAL</u> <u>CALCULATION</u> To not forget!)

"red line" inside the aperture: area where $\Delta G/G \leq 1$ unit (good field region)

NI	Α	1250	2500	3750	5000	6250	40000
Gradient	T/m	44.14719	75.58737	111.0874	142.2917	155.2365	171.4439
b6		58.93988	54.76554	48.30059	40.41387	36.75506	32.13193
b10	units	0.216246	0.14742	0.072838	0.023252	0.013356	0.011051
b14		0.001752	1.04E-03	0.000633	6.08E-04	6.24E-04	5.96E-04
b18		0.000583	5.37E-04	0.000473	3.95E-04	3.59E-04	3.13E-04

Some conclusions:

- > CLIC QD0 baseline (for $L^*=3.5 \text{ m}$) is an hybrid quadrupole design.
- > A short prototype of the magnet was successfully built to validate the concept.
- We have recently started a hybrid magnet design study for the ILC (i.e. CLIC QD0 design scaled to ILC geometry and strength)
- > Field quality aspects are also take into account in the study, that shows possible optimization paths for the magnet performances.
- In order to proceed with the study, we should discuss and have inputs about boundary conditions imposed by the ILC experiments and accelerator.

> Among them:

- a. QD0 cross-section limitation
- b. tunability required
- c. field quality requirements
- d. vibrations limitation requirements
- > The study for an anti-solenoid system should be also evaluated.

Thanks

Extra slides

CLiC SD0 Status

- Main requirements & boundary conditions:
 - Tunability of ~ -20 %
 - Minimized vibrations (magnet should be actively stabilized)
 - Integration with the Post Collision vacuum pipe needed.
- Compactness is less critical respect to QD0.
 Magnet is placed outside the Detector on the Accelerator Tunnel border.

Prototype key aspects:

- The proposed design should permit us to investigate the <u>very precise assembly of</u> <u>several (4 or 5) longitudinal sections</u>, each equipped with PM.
- Manufacturing (with highest precision) of each Permendur sector, PM insert, "C" shape return yokes
- Measuring, Assembly and sorting of PM blocks
- Assembly of the sectors (magnetic forces between blocks impact? PM blocks are very fragile!)
- Magnetic measurements
- Final alignment

The "Single Stretched Wire", "Vibrating Wire" and "oscillating wire" MM Systems

Rotated Vibrating Wire (RVW)

Measure multipoles:

1. by means of a vibrating wire

2. by measuring in different positions on a circle through a simple mathematical model relating oscillation and field components

The "Rotated Vibrating Wire" MM System

On each position there are two components of the wire displacement

Moving a wire on a circle fed by a sinusoidal current (in order to increase the measurement significativity)