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Motivation and Context

Physics at a linear collider can benefit greatly from a
precise knowledge of the center-of-mass energy.

— Examples: m,, my,, my, m, m(chargino)

The Vs, method based on di-muon momenta promises
much better statistical precision than other methods.

— See my talk at the Hamburg LC2013 workshop last year

— Needs a precision knowledge of the tracker momentum scale
Here, | discuss prospects for a precision understanding of
the tracker momentum scale with an emphasis on studies
with J/psi’s.

Precision = 10 ppm or better




Polarized Threshold Scan
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Experimentally very robust. Fit for eff, pol, bkg, lumi




Method P Proposed and
studied initially by

Use muon momenta. Measure E, + E, + |p,,]. T. Barklow

Under the assumption of a massless
photonic system balancing the
measured di-muon, the momentum
(and energy) of this photonic system is
given simply by the momentum of the
di-muon system.

So the center-of-mass energy can be
estimated from the sum of the energies
of the two muons and the inferred
photonic energy.

(Vs)p =E, +E, +|p, +p,|
In the specific case, where the photonic i e e
system has zero p+, the expression is

' I ' — 1+ cosfl 1+ cosfly
particularly straightforward. It is well Vsp = pr ( costh co 3)

approximated by —

where p+is the p; of each muon. Assuming

excellent resolution on angles, the resolution Method can also use non-radiative
on (\/S)p Is determined by the 6 dependent p; return events with m,, > m,
resolution.

sin 64 sin (o




Summary Table

ECMP errors based on estimates from Preliminary
weighted averages from various error bins up
to 2.0%. Assumes (80,30) polarized beams,

equal fractions of +- and -+. (Statistical errors only ...)

< 10 ppm for 150 — 500 GeV CoM energy 161 GeV estimate using KKMC.




“New” In-Situ Beam Energy Method
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ILC detector momentum resolution
Use muon momenta. (0.15%), gives beam energy to better than

M E +E.+ 5 ppm statistical. Momentum scale to 10
castre &, 2+ P12l @S ppm => 0.8 MeV beam energy error

an estimator of \'s projected on my,. (J/psi)

Beam Energy Uncertainty should be controlled for Vs <= 500 GeV




Momentum measurement
basiCs

 |In uniform field — helical trajectory
* pr=0gBR
* pr (GeV/c) =0.2997925 B (T) R (m)

— Errors in momentum scale likely from
« Knowledge of absolute value of B
o Alignment errors.
 Field inhomogeneities.




NMR ?

o Commercial NMR probes can achieve of
order ppm accuracy.

NMR PROBES

THE ULTIMATE IN PRECISION
Resolution of under 1 Hz, relative precision of under 0.1 ppm, absolute accuracy of
5 ppm, independent of temperature.

* |n practice such measurements have never
been fully exploited in collider detector
environments.




Candidate Decay Modes for
Momentum-Scale Calibration




Momentum Scale Study

Studies done with ILD fast-simulation SGV
— “covariance matrix machine”
— Using ILD model in SGV

Plus — various vertex fitters (see later).
Main J/psi study done with PYTHIA Z decays.

Now also have some single-particle studies
where | am able to specify the decay-point.

— Current approach and/or SGV does not yet work
appropriately for large dO/R. (needed for KO, A)




Mass Sensitivity to
Momentum-Scale Shift

20 GeV parent -100 ppm shiftinp  +100 ppm shift in p

momentum. Fractional Mass Difference vs costh
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Candidate Decay Modes for
Momentum-Scale Calibration

Particle
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Table 1: Candidate standard candles for momentum scale calibration and abundances in £

decay.
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Table 2: Estimated momentum scale statistical errors assuming 100% acceptance.




Jhy Based Momentum Scale
Calibration
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J/psi’s from Z
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J/psi Kinematics

\III‘II\IlI\II‘III\lI\II‘\II\lI\IIlIII\L

IID|\I\I|\IS]_IZ—

Enrries
Mean
RMS
UDFLW
OVFLW

Jpsi momentum

30

0

vl

40

(GeV)

m! Tl | T T3z

Entries
Mean
RMS
UDFLW
OVELW

5435
0.8361]
0.2349 |
0.000] |
0.000 ]

\IIJLJILJ Lk_.-l.

|
[u—

-0.5

Dimuon cos12

0

'scos é,,)

J/psi Kinematics from Z—bb

T 1 ]G]
Entries
Mean
RMS
TDELW
OVFLW

L\J\ll\l

cl\l\

10

17 N

30 40

Muon pT (GeV)

T L B BN T

Eniries

Mean
RMS
UDELW
OVELW

= I\II|IIII|\Illl\lll‘\ll\‘\lll‘llll

0.2

0.4

0.6 0.8

Jpsi Decay Length (cm)




Entries pef 40 MeV/c?

Example LEP data
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3.5M hadronic
events.
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Opposite-sign fit (1941 candidates; 495 in 2.95 < M,,, < 3.25 GeV/c? window)

pLpL
J/4 fraction in window  fj/y = (73.321) %

hemiparabola fraction Py = (69.9+1.6) %
total 1/(2S)s Nyas) = 16.7+6.6
J /1) mass My = (3102.34+3.4) I\Ie\-"ffc?



Momentum Scale with J/psi

With 10° Z’s expect statistical
error on mass scale of < 3.4 ppm
given ILD momentum resolution.

Most of the J/psi’s are from B
decays.

J/psi mass is known to 3.6 ppm.
Can envisage also improving on

the measurement of the Z mass
(23 ppm error)

jﬁL <pi>=(0.150.2) GeV'
1zldof= 17722

Events per 2 MeV bin

J/psi from Z decay
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Is the mass resolution as
expected?
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=> Need to calculate mass using the track
parameters at the di-muon vertex.




Momentum Resolution
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Sex Pp G
Momentum Resolution
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Resolution depends on number of points (N), track-
lengths (L and L), point-resolution (¢) and material
thickness.




Track/Helix Parameterization
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Vertex Fitters

A Method for Finding the In the 48 years since 1966,
Least Squares Estimate of the Moore’s law implies a factor
Intersection Point of Two of 224 increase in CPU powver.
Helices in Space Essentially what can now be
done in 1s used to take 1

R. J. RoysToN AND J. GREGORY

Argonne National Laboratory, Argonne, Illinois yealr.

When the helical trajectories of two charged particles mov-

ing away from a common point in a magnetic field are recon- AN RV R @ 1) o RL=1S 00l I0)
structed from measurements on the tracks, the reconstructed

tracks are perturbed by measurement and other errors and have “faSt” in their tltle

do not, in general, intersect. A method is given for adjusting
the reconstructed tracks in a least squares manner so that they

do infersect. | investigated the OPAL and
DELPHI vertex fitters, but
after finding a few bugs and
features, decided to revert to
MINUIT.

280 Communications of the ACM

Volume 9 / Number 4 / April, 1966
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J/Psi (from Z) Vertex Fit Results |

Implemented in MINUIT by me.
(tried OPAL and DELPHI fitters —
but some issues)
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Single particle studies

20 GeV Particles 10mm displacement
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Mass Plots

20 GeV Particles 10mm displacement
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20 GeV Particles 10mm displacement
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Mass Resolution

20 GeV Particles 10mm displacement
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Bottom-line with Z events

Without vertex fit and using simple mass fit,

expect statistical error on J/psi mass of 3.4 ppm
from 10° hadronic Z’s.

With vertex fit => 2.0 ppm

With vertex fit and per-event errors => 1.7 ppm.

(Note background currently neglected. (S:B) in £ 10 MeV range
IS about 135:1 wrt semi-leptonic dimuons background from Z-
>hbb, and can be reduced further if required)

Neglected issues likely of some eventual importance :
— J/psi FSR, Energy loss.

— Backgrounds from hadrons misiD’d as muons

— Alignment, field homogeneity etc ..




Prospects at higher energies

Jpsize b bbar Cross- sectlon comparlson

Other modes: HX, ttbhar

(prompt) J/psi production from gamma-gamma
collisions (DELPHI: 45 pb @ LEP2)

Best may be to use J/psi at Z to establish momentum
scale, Improve absolute measurements of particle
masses (eg. DY)

— Use DY for more modest precision at high energy
(example top mass application)




Improving on the Z Mass and
Width etc?

« With the prospect of controlling Vs at the
few ppm level, ILC can also target much
Improved Z line-shape parameters too.

* The “Giga-Z” studies were quite
conservative In their assumptions on beam
energy control and this is the dominant
systematic in many of the observables.




Summary

* m,, can potentially be measured to 2 MeV at
ILC from a polarized threshold scan.

* Needs beam energy controlled to 10 ppm

— DiI-muon momentum-based method has sufficient
statistics (Vs=161 GeV)

— Assoclated systematics from momentum scale can be
controlled with good statistics using J/psi’s collected
at Vs=91 GeV

e Statistics from J/psi in situ at Vs=161 GeV is an issue.
Sizable prompt cross-section from two-photon production
(45 pb) In addition to b’s.




