


Impressions from ADI/CFS meeting - Tokyo 8-10.04.14

Nick Walker 109th ILC@DESY Project Meeting 25.04.14

CFS-ADI Joint Meeting

2.5 days

Focus: pre-construction work for Kitikama site development

• 3-5 year plan

Identify priority accelerator design issues

Needed by CFS team

https://agenda.linearcollider.org/conferenceDisplay.py?confld=6342

Who attended?

International

- Karsten Büßer (DESY) MDI
- Lyn Evans (CERN) LCC
- Brian Foster (DESY, UH) LCC
- Mike Harrison (BNL) LCC
- Vic Kuchler (FNAL) CFS
- Benno List (DESY) ADI
- John Osborne (CERN) CFS
- Ewan Paterson (SLAC) ADI
- Marc Ross (SLAC) ILC TB
- Nikolay Solyak (FNAL) ILC TB
- Nick Walker (DESY) ILC TB
- Harry Weerts (ANL) LCC

Japan

- Atsushi Enomoto (KEK) CFS
- Masanobu Miyahara (KEK) CFS
- Tomoyuki Sanuki (U. Tohoko) CFS
- Nobuhiro Terunuma (KEK) ILC-TB
- Akira Yamamoto (KEK) ILC-TB
- Hitoshi Yamamoto (KEK) ILC-TB
- Yasuchika Yamamoto (KEK) ILC-TB
- Kaoru Yokoya (KEK) ADI
- Masao Kuriki (U. Hiroshima) -ADI
- Tsunihiko Omori (KEK) ADI

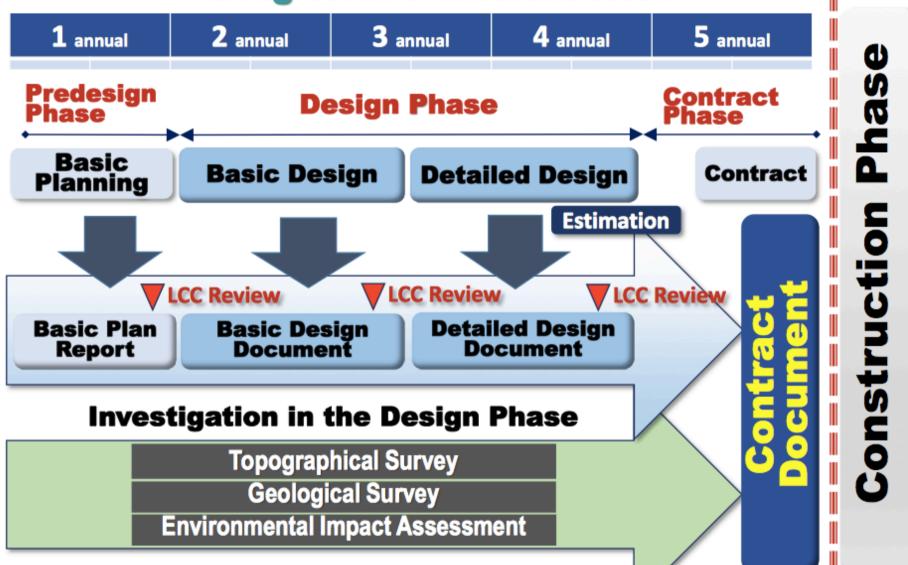
Japan (observers)

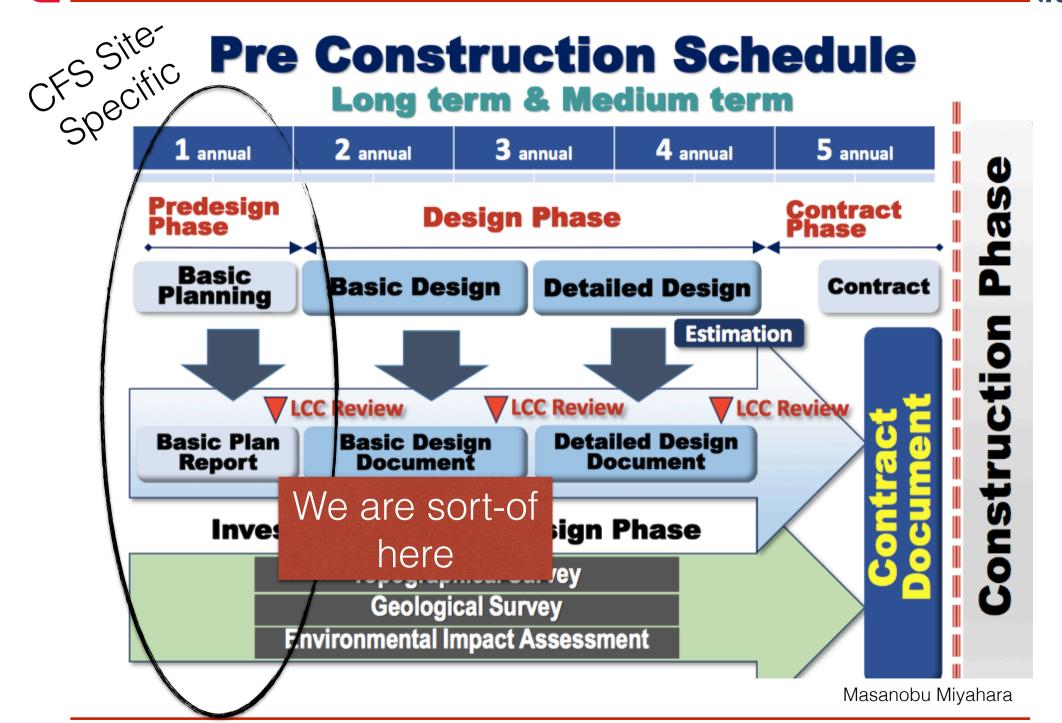
- Yoshinobu Nishimoto (JPower)
- Go Urukawa (JPower)

Session themes

- Session 1 Introductions and goals
- Session 2 CFS pre-project activities
 - pre-project work scope, Japanese plans and required funding
- Session 3 ADI support for CFS work
 - ▶ TDR design 'loose ends', outstanding critical decisions that affect CFS site development
- Session 4 Technology support for CFS
 - ▶ Radiation shielding for tunnel and helium inventory and safety aspects
- Session 5 MDI I
 - ▶ Detector CFS requirements (detector hall)
- Session 6 MDI II
 - ▶ Detector hall solutions and IR location
- Session 7 Energy phasing
 - ▶ 1st phase 250 GeV machine and its implications
- Session 8 Site infrastructure
 - ▶ Power usage, and possible ways to reduce it
- Session 9 CFS near-term questions for ADI
 - ▶ What are the critical questions that need to be answered now?
- Session 10 Wrap up

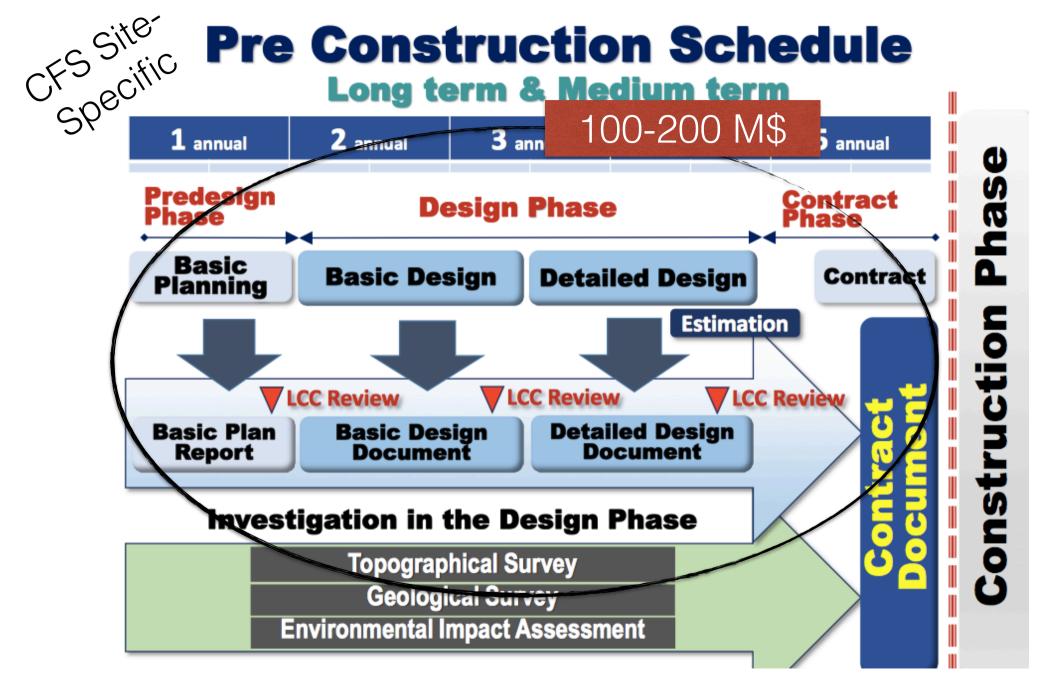
Overal impression


- Well organised meeting
- Good exchange of information
 - between Japanese CFS and accelerator
- Provided some focus for next steps
 - ▶ in particular planning for AWLC 14
- Highlighted the enormity of the work that really needs to be done
 - and the lack of resources to do it!
- Our Japanese hosts were very gracious (as always)


CFS Site Specific

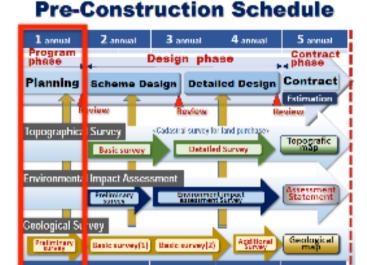
Pre Construction Schedule

Long term & Medium term


CFS Site Specific **Pre Construction Schedule** Long term & Medium term TDR may have 1 annual 2 annual 5 annual 4 covered much Contract Phase **Predesign** Phase of this Basic **Basic Design Detailed Design** Contract **Planning** Construction **Estimation** LCC Review LCC Review **CC Review Basic Plan** Basic Design **Detailed Design** Document Document Report **Investigation in the Design Phase Topographical Survey Geological Survey Environmental Impact Assessment**

CFS Site Specific **Pre Construction Schedule** Long term & Medium term 3 annual 1 annual 2 annual 5 annual 4 annual 4 has **Predesign** Contract Phase **Design Phase** Phase Basic **Basic Design Detailed Design** Contract **Planning** Construction **Estimation LCC Review LCC Review LCC Review Basic Plan** Det **Basic Design** Critical path -Document Report needs funding Investigation in the Desigr upfront! **Topographical Survey Geological Survey**

Environmental Impact Assessment



A question of money

Near-term Schedule

- What can we prepare with limited budget before green sign (project approval)?
- What should be determined and included in the Planning Document?

How far can we go along this schedule with our (very) limited resources?

Vic Kuchler

Pre Construction Design Work

Civil Engineering Design

WORK SCOPE TABLE by every phase								
	Basic Planning	Basic Desi	gn	Detailed Design				
Facility	R	OR		NR				
Arrangement	Determination of - IR point, Access system - BL Route & Elevation	Revision of - IR point, Access s - Site & Access por	•	- Minor modifications of the basic design				
Shape &	R	OR		NR				
Dimension	Determination of - Cross Section Shape - Basic Dimension	Revision of - Cross section Sha - Whole Dimension	•	- Minor modifications of the basic design				
Structure &	-	OR						
Materials		Structural plannir - Load condition, - Seismic Design p		End of 2014:				
Schedule &	R	NR	IR location ±100m					
Cost	- Assumption Schedule - Outline Cost Estimation	Trial Estimation - Direct Cost, Unit		Machine end points ±300				

Legend:

R=Required OR=Optional Required NR=Not Required

CES-ADI Joint Moeting

CFS Driven AD&I (summary)

- Priority 1: Length of Tunnel
- Priority 2: Underground Volume
- Priority 3: Conventional Facilities (mech & electrical)
 - We should try and review as best as possible the status of the above
 - CFS should "lead the way"
 - what? when? how accurate?

From discussions:

- vibration tolerances (ground motion) → tunnel ~20m deep!
- survey & alignment requirements

LCC-Phase resource summary for Accelerator Design

	Colu	¥																	
	BDS			Damp	ing F	Rings	Elect	ron Sou	rce	Main	Linad	CS	Posit	ron Sou	rce	RTML		Total min	Total max
Row Labels	min		max	min	ı	max	min	max		min	r	max	min	max		min	max		
Accelerator physics		0	0		3	9								3	9			6	18
Beam dynamics		9	18		4	6					3	6		6	12	3	6	25	48
Cryomodule											1	3						1	3
Integration		1	3					2	2		1	3		4	8			8	16
Lattice designer		2	6		1	2		1	3		3	6		4	9	1	. 3	12	29
Magnet/PS		1	3		1	3		1	3		1	3		3	7	1	. 3	8	22
Management														0	0			0	(
SRF					1	1					1	3						2	4
Vacuum		1	3		1	3		1	1		1	3		2	4	1	. 3	7	17
Warm RF								1	3					4	8			5	13
Grand Total		14	33		11	24		6	12		11	27		26	57	6	15	74	168

estimated ~10 person years (±4)

Scope (reminder)

- Bring TDR up to consistent level of detail (but still conceptual —
- Re-evaluate and fix critical CFS requirements
- Incorporate energy-phasing design aspects

Pre Construction Design Work

Civil Engineering Design

WORK SCOPE TABLE by every phase								
	Basic Planning	Detailed Design						
Facility	R	OR	NR					
Arrangement	Determination of - IR point, Access system - BL Route & Elevatio A for	- Minor modifications of the basic design						
Shape & Dimension	R	OR	NR					
	Determination of - Cross Section Shape - Basic Dimension	Revision of - Cross section Shape - Whole Dimension	- Minor modifications of the basic design					
Structure &	-	OR	NR					
Materials		Structural planning - Load condition, Materials - Seismic Design plan	- Structural Design - Construction planning - Detailed Design					
Schedule &	R	NR	NR					
Cost	- Assumption Schedule - Outline Cost Estimation	Trial Estimation - Direct Cost, Unit cost	Cost Estimation - Final Cost for Bidding					

Legend:

R=Required OR=Optional Required NR=Not Required

CES-ADI Joint Meeting

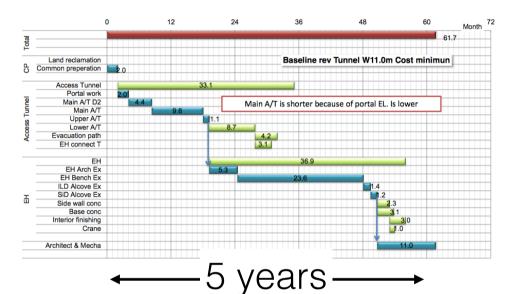
Detector Hall - Shafts versus Tunnels

Shift IR location to facilitate vertical shaft - ILC request

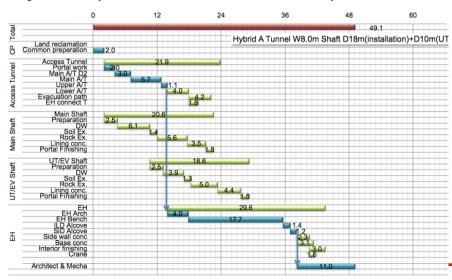
Hybrid option case study

Baseline	Hybrid-A	Hybrid-B	Hybrid-C
Assembly Yd Upper A/T Main AT W11m Grad7% D/H	Assembly Yd Main AT W8m Grad10% D/H	Assembly Yd Main AT W9.5m Grad7% D/H	Assembly Yd Main AT W11m Grad7% D/H
 1 HT (11x11m 7%grad) Detector assembling is inside of DH 	 1 HT (8.0x7.5m 10%gradl) 2 VS (D18m, D10m) Detectors assembling is on-ground. 	 1 HT (9.5x9.0m 7%gradl) 1 VS (D18m) ILD assembling on-ground SiD inside D/H 	 1 HT (11x11m 7%grad) 1 VS (D10m) Detector assembling is inside of DH
UT lines in DR/AT	UT lines in UT shaft	UT lines in Main shaft	UT lines in UT shaft
DH 175,000m3L144m H42m W25m	DH 128,000m3L108m H42m W25m	DH 165,000m3L134m H42m W25m	DH 175,000m3L144m H42m W25m
Heavy lowering system non	Heavy lowering system necessary	 Heavy lowering system necessary 	 Heavy lowering system non
 Location of DH and assembly yd. can be selected individually. 	Assembly hall is above D/H	same as on the left	same as on the left
 Human pass way :car Machine and materials tunnel by vehicles 	 Human pass way :elevator Machine and materials tunnel by vehicles 	 Human pass way :elevator Machine and materials ILD:VS HT, SiD:HT 	 Human pass way :elevator Machine and materials tunnel by vehicles
 Environmental impact will be smaller during construction. 	Noise reduction	same as on the left	same as on the left

Detector Hall - Shafts versus Tunnels


Hybrid option case study

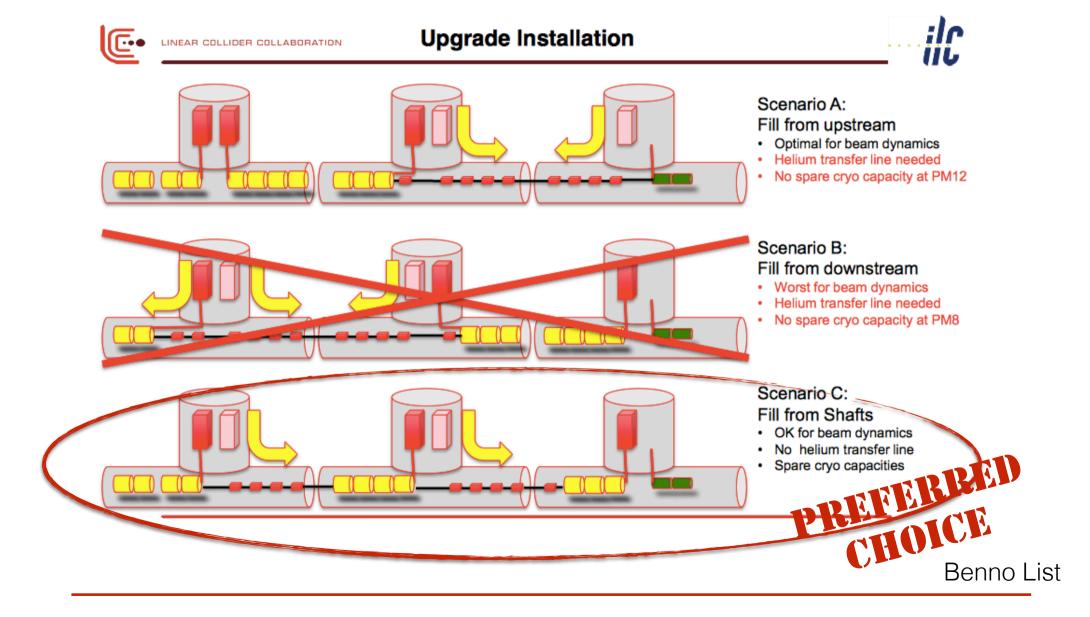
Trybild Option	i case study		
Baseline	Hybrid-A	Hybrid-B	Hybrid-C
Assembly Yd Upper A/T Main AT W11m Grad7% D/H	Assembly Yd Main AT W8m Grad 10% ≤7% Gra		Assembly Yd Main AT W11m Grad79 D/H
 1 HT (11x11m 7%grad) Detector assembling is inside of DH 	 1 HT (8.0x7.5m 40%gradl) 2 VS (D18m, D10m) Detectors assembling is on-ground. 	 1 HT (9.5x9.0m/7%gradl) 1 VS (D(8m)) ILD assembling on-ground SiD inside D/H 	 1 HT (11) 11m 7%grad) 1 VS (D10m) Detector assembling is inside of DH
UT lines in DR/AT	UT lines in UT shaft	UT lines in Main shaft	UT lines in U shaft
DH 175,000m3L144m H42m W25m	DH 128,000m3L108m H42m W25m	 DH 165,000m3 L134m H42m W25m 	 DH 175,000m3 L144m H42m W25m
 Heavy lowering system non 	 Heavy lowering system necessary 	Heavy lowering system necessary	Heavy lowering system non
 Location of DH and assembly yd. can be selected individually. 	Assembly hall is above D/H	same as on the left	same as on the left.
 Human pass way :car Machine and materials tunnel by vehicles 	 Human pass way :elevator Machine and materials tunnel by vehicles 	 Human pass way :elevator Machine and materials ILD:VS HT , SiD:HT 	 Human pass way :elevator Machine and materials tunnel by vehicles
 Environmental impact will be smaller during construction. 	Noise reduction	same as on the left	same as on the left



Detector hall construction

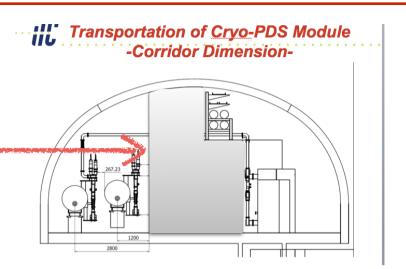
Baseline (Detectors / HT installation) Schedule

Hybrid-A (Detectors / VS installation) Schedule

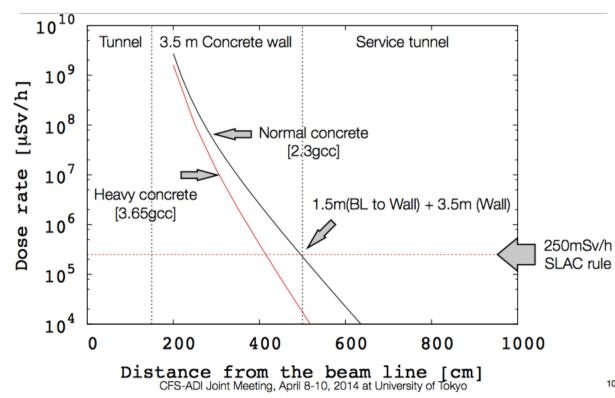


- Hybrid A saves ~1 year
- Does not include detector platform & infrastructure
 - additional 2 years?
- ILD surface assembly
 - à la CMS
- SiD preference for in-cavern assembly
 - near-horizontal access
- Beam commissioning?
 - Machine instrumentation @ IP?
 - Shielding?

Energy Phasing: Approach to 1st phase



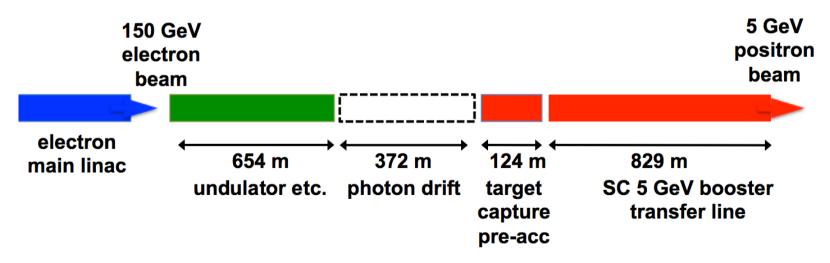
Radiation safety


 How thick does this wall have to be?

- Current approach "conservative"
 - British understatement

500GeV, 18 MW beam on Cu 20 X₀ target

e+ source proposal (T. Omori)

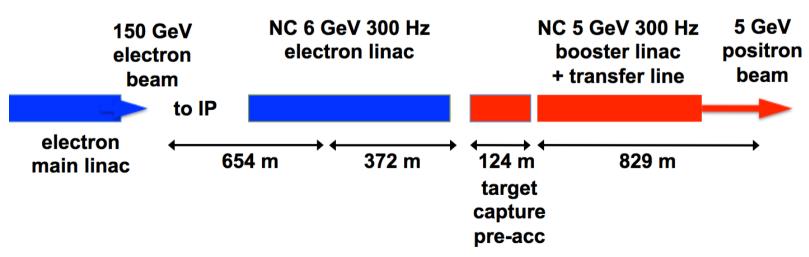

Discussion@LCWS2013(Tokyo)

If we start with "Conventional", we need to keep smooth path to "Undulator".

footprint compatibility (no change of the tunnel)

 "300Hz conventional source" should fit the space for "undulator source"

undulator e+ source


e+ source proposal (T. Omori)

Discussion@LCWS2013(Tokyo)

If we start with "Conventional", we need to keep smooth path to "Undulator". footprint compatibility (no change of the tunnel)

 "300Hz conventional source" should fit the space for "undulator source"

300 Hz conventional e+ source

Role of Central ILC Lab

- How do the lab/campus facilities interact with the project equipment testing, engineering support, equipment staging and storage, offices, power & water infrastructure, etc...
 - Other than some generic arm waving estimates we have little meaningful information here.
 - ▶ We need to decide on the perceived role of the ILC laboratory and start with some form of functional analysis.
 - Principally, but not completely, a [Japanese] domestic issue

Role of Central ILC Lab

 How do the lab/campus facilities interact with the project – equipment testing, engineering support, equipment staging and storage, offices, power & water infrastructure, etc...

on-site needs of the Petector and Machine

- Other than some generic arm waving estimates we have little meaningful information here.
- ▶ We need to decide on the perceived role of the ILC laboratory and start with some form of functional analysis.
- Principally, but not completely, a [Japanese] domestic issue

LCC can help with the requirements - but Japan needs to decide how to implement.

Forwards...

- Keep calm and carry on (to AWLC 14 @ Fermilab)
 - ▶ IR location and detector hall layout
 - ▶ (Limited) accelerator design work
 - priority: fix tunnel length!
 - ▶ Some efforts on rad. and LHe safety requirements
- Planning for more money!
 - Convert CFS PowerPoint schedule a real plan
 - resource loaded
 - cost/resource estimate
 - basis of bid to Japanese MEXT for real (preconstruction) money