## LCC Physics and Detector Report

1. General remarks
2. Organizational issues
3. Status/plan of concept groups
4. Working groups

Detector R\&D liaison
MDI working group
Software/computing
ILC parameter working group

Hitoshi Yamamoto
LCB meeting, DESY
February 20, 2014

## General Remarks

## LCC Physics\&Detectors

- Two goals :
- Prepare and guide detector groups toward realization of the ILC.
- Coordinate and promote collaborations between the ILC and CLIC in physics\& detector activities ('synergy')
- Keep the community togeher

LCC does not manage CLICdp activities

2013-2016

- Negotiations among governments
- Accelerator detailed design, R\&Ds for cost-effective production, site study, CFS designs etc.
- Prepare for the international lab.

2016-2018

- 'Green-sign' for the ILC construction to be given (in early 2016 )
- International agreement reached to go ahead with the ILC
- Formation of the ILC lab.
- Preparation for biddings etc.

2018

- Construction start (9 yrs)

2027

- Construction ( 500 GeV ) complete, (and commissioning start) (250 GeV is slightly shorter)


## 2013-2016

- Re-optimize the detector design
- Complete the necessary R\&Ds
- Prepare to move toward real collaborations 2016-2018
- 'Green-sign' for the ILC construction to be given (Formation of the ILC lab.)
- Formation of detector collaborations (possibly ne.


## LCC Phys\&det

early 2016 )

- Call for detector proposals
- Proposal review, approval of detectors
- Detector TDR completed

ILC lab.
2018

- Construction/assembly start (9 yrs)

2027

- Detectors ready for commissioning

Many mini workshops worldwide to discuss how to participate in the ILC, how to obtain funds for the ILC.

May 16-17, 2013 : Como, Italy
Sept 2-3, 2013 : United Kingdom
Nov 22, 2013 : Germany
Nov 29, 2013 : Paris, France
Dec 13, 2013 : Seoul, Korea
Feb (1 day of )12-14, 2014 : Spain

LCWS13
Nov 11-15, Tokyo. 349 registered (by far the largest in Japan)
CLIC workshop, CERN
Feb 3-7, CERN. 269 registered

## Organizational Issues

## Organizational Progresses Since LCB Jun-2013

- LCC P\&D EB structure defined and started
- No regional reps above EB members
- Key members defined
- Working groups and liaison defined and started
- Detector R\&D liaison
- MDI working group
- Software/Computing working group
- ILC parameter working group
- Physics and Detector Advisory Panel chair selected
- To be done soon
- Physics and Detector Advisory Panel members to be selected
- Physics working group to be established


## LCC PD Structure



## LCC Physics and Detectors

 EB members
## Concept Groups

- SiD representative : Marcel Stanitzki
- ILD representative : Ties Behnke
- CLICdp representative : Mark Thomson


## Regional reps

- European regional contact : Juan Fuster
- North American contact : Dmitri Denisov
- Asian contact : filled in by HY

Plus WG conveners and liaisons

## PD Advisory Panel

- Advises the associate director in executing his/her mandate
- Should be independent of the executive board
- The advisory panel chair is nominated by the AD, and reports to the AD
- Its membership is chosen by the advisory panel chair in consultation with the AD
- Reviews progresses of ILC detector concept groups toward real collaborations and the state of synergy between the ILC and CLIC in physics\&detectors area
- Chair: Paul Grannis
- Aiming at $1^{\text {st }}$ meeting at AWLC14, Fermilab (May)


## Concept Groups

## SiD: Status

Milestones in 2013

- DBD has been successfully completed
- SiD has been very active in the US Snowmass process
- Part of the global Linear Collider Community effort
- Providing input to P5, which formulates the US strategy for particle physics
- SiD has been doing an reorganization effort, moving towards a more formal organization


## SiD : Detector Consortium

- Have been very successful with a light-weight organization until now
- It is clear that with the ILC moving forward we have to move to some more formal Organization
- Not a collaboration, but a consortium
- SiD will remain open to all interested people and groups
- Membership in SiD
- Representation in the Institute Board (IB)
- Actively take part in decisions
- Become an Author (once we start having SiD publications)
- Both individuals and institutes can be members
- Membership is approved by IB


## SiD : Plans for the LCC phase

- Goals
- $\operatorname{SiD}$ will be one of the two experiments at the ILC
- Deliver a full TDR once such a call has been made
- SiD has defined the following priorities for this
- Site-Specific Studies
- Detector Optimization studies
- Strengthen ILC Physics case
- Common Software Development
- Detector R\&D
- Detailed Costing Study as preparation for the TDR


## ILD: 2014 and beyond

1.) Re-optimization of the ILD detector concept: intensive meetings
Performance - Cost - Realism
2.) Intense and vibrant R\&D program in close cooperation with the R\&D collaborations


Particle flow performance

- Sophisticated algorithm
- Realistic detector model

Tools and expertise for an in-depth and realistic optimization are available

## ILD: R\&D

Intense R\&D work in many areas.
Focus on

- Demonstrate the system integration aspects
- Demonstrate the scalability of the sub-systems
- Develop an overall subdetector-management concept
- Cooling
- Power
- Mechanical integration
- Electrical integration


## CLICdp

* Organisation
- CLICdp organised through lightweight collaboration-like structure
- Spokesperson (Lucie Linssen), Executive team, Institute board
+ working groups
- Currently 22 institutes have signed MoC
- Structure provides effective oversight of CLICdp activities
$\star$ Recent focus of work
- Higgs Studies
- Working towards synoptic paper on Higgs physics at CLIC
- Assumes $350 \mathrm{GeV}, 1.4 \mathrm{TeV}$ and 3 TeV energy stages
- Will be submitted to EPJ C in late spring/early summer
- Detector Optimisation
- Current studies use two detector concepts CLIC_ILD and CLIC_SiD
- New effort to study optimisation of a detector for CLIC
- Aiming for a single CLIC detector concept by end of year
- will simplify physics studies


## CLICdp

$\star$ Cooperation with ILC

- Maintaining good contacts at all levels
- Representation in LCC PDeb
- Good working relations at ground-level
- e.g. productive collaboration with software
- Detector R\&D
- CLICdp R\&D efforts tied in closely with ILC detector R\&D effort: e.g. CALICE, FCAL
* Other Synergies
-HL-LHC and FCC detectors
- Investigating possible synergies with HL-LHC activities on highgranularity calorimetry
- Also looking at links with design of FCC (hadron-collider) detector and physics


## Working Groups/Liaison

## MDI Working Group

- Charge
- Coordinates the activities related to the machine-detector interface
- Design of the detector hall,
- integration of detectors,
- Alignment of detectors and beamlines near the interaction point.
- It liaise with related groups of accelerator activities
- Members
- Karsten Buesser (convener), Phil Burrrows, Tom Markiewicz, Marco Oriunno, Tomoyuki Sanuki, Toshiaki Tauchi


## MDI Working Group

- Immediate tasks
- For the mountainous (Kitakami) site
- Detector assembly/installation scheme/schedule/cost
- Detector hall design
- Coordination with the accelerator side
- Working with quite a wide range of groups
- CFS group, ADI group, BDS group


## Detector R\&D Liaison

- Charge
- Ensures productive communication between the LCC Physics and communicates relevant information from the Executive Board to detector R\&D groups and vice versa.
- In contact with all detector R\&D groups relevant to linear colliders to keep track of the overall detector R\&D efforts conducted or planned for linear colliders.
- Periodically compile summaries of the R\&D efforts.
- Does not dictate what each R\&D group should or should not do (thus the name 'liaison')


## Detector R\&D Liaison

- Liaison:
- Maksym Titov, Jan Strube (deputy)
- Immediate task
- Produce a document describing current detector R\&Ds relevant to LC (~30 pages)
- Would elucidate overlaps and holes - even though it does not explicitly state them
- Goal: First draft by AWLS14, Fermilab (May 2014)


## Software\&Computation Working Group

- Charge
- Coordinates efforts to develop common software tools among the detector concept groups so that duplications are avoided and overall progresses are promoted.
- Event generators, data formats, and reconstruction programs.
- When needed, it coordinates large-scale MC productions.
- Evaluates computing needs from now up to the real experiments (for the laboratory design)
- Members

Norman Graf (convener), Frank Gaede (deputy), Akiya Miyamoto, Andre Sailer

## ILC Parameter Working Group

- Charge
- Liaises with the relevant accelerator groups to communicate the physics and detector needs regarding the ILC machine parameters
- Energy, luminosity, crossing angles, pulsing scheme, and bunch patterns etc.
- Works together as needed with the MDI working group and simulation study efforts in detector concept groups
- beam backgrounds, achievable accuracies in various physics measurements etc.
- Members

Jim Brau (convener), Tim Barklow, Keisuke Fujii, Jenny List

## ILC Parameter Working Group

- Immediate task
- Initial running scenarios of the ILC
- How long to run at what energy in what order?
- At each energy, what is the minimum energy to produce stated physics result?
- How much more is needed to lead to significantly meaningful improvement?
- Drafting a document now (a preliminary draft is ready)
- Close communications with the machine side essential
- Add a few accelerator members (K. Yokoya. N. Walker)
$\rightarrow$ form a joint working group


## ILC PARAMETERS AND PHYSICS GOALS (A PRELIMINARY DISCUSSION)

Barklow, Brau, Fujii, List
February 18, 2014
The views expressed here are those of the authors of this note, meant to initiate a discussion of the broader community.

## A preliminary 'conclusion':

- An optimal evolution from the physics perspective may be
- operate at 250 GeV until capability (sufficient number of cryomodules produced) to upgrade to 350 is reached (say $1+2.5$ years)
- pause to upgrade to 350 GeV
- operate at 350 GeV while capability to upgrade to 550 GeV is fabricated (say 3 years)
- pause for final upgrade to maximum baseline energy of 550 GeV
- continue operations at 550 GeV or other energy points
- Set maximum baseline energy reach to 550 GeV
- All three energies are thresholds of important physics channels (ZH, t$\overline{\boldsymbol{t}}, \boldsymbol{t} \overline{\boldsymbol{t}} \boldsymbol{h})$,


A slight increase In energy beyond 500 GeV increases ttH yield significantly

## Summary

- LCC Physics and Detector Organization is starting to function
- EB has been active for $\sim 4$ months
- Most working groups are formed and active
- PD Advisory Panel is being formed
- Coordination with accelerator is set up at many levels
- Concept groups are preparing to move toward real collaborations
- Synergy of CLIC and ILC in phys\&det is functioning adequately

