THGEM for DHCAL Status report

S. Bressler for WIS Aveiro and Coimbra

Shikma Bressler, Weizmann Institute of Science

CALICE collaboration meeting, March. 20, 2014

Outline

- THGEM: a quick reminder
 - THGEM structures
 - Rate limitations
- Progress since last year
- Future plans

THGEM: a quick reminder

- THick GEM (THGEM) is a 10 folded expanded GEM
 - Typical parameters: a ~ 1 mm, d ~ 0.5 mm, h ~ 0.1 mm
- Main advantages
 - Simple
 - Economic
 - Robust
 - It can be industrially produced over large area using standard PCB technologies
- Growing interest and experience with large scale detectors
 - COMPASS-RICH upgrade
 - ALICE-RICH upgrade

THGEM structures

- Double sided with induction gap
 - With or without gas multiplication in the induction gap
- Single-sided WELL
 - Resistive layer
 - Resistive plate

THGEM structures

- Double sided with induction gap
 - With or without gas multiplication in the induction gap
- Single-sided WELL
 - Resistive layer
 - Resistive plate

THGEM structures

• Wide dynamic range when operated with multiplication in the induction gap

- Successful operation in muon beam
- Gain drop in pion beam not reproduced at the lab

Rate limitations

- We measure the gain at rates in the range 10⁻¹ 10⁵ Hz/mm²
 - Double sided THGEM: total of 20 % gain drop
 - WELL with resistive layer: up to 40 % gain drop
 - Surface resistivity: $10 \text{ M}\Omega/\text{square}$
 - WELL with resistive plate: ~25% gain drop
 - Bulk resistivity: 10⁹ Ω.cm

Future plans - Towards 1 m² prototype

- Start with 300x300 mm² detector
 - Chamber, electrodes and a corresponding SRS anode should be ready soon
 - Solve technical difficulties
 - Maintain constant gaps and fields
 - Optimize segmentation to reduce the capacitance
 - •
 - Repeat characterizations studies
 - Gain stability
 - Gain Vs. rate
 - Response to HIPs
 - •
 - Consider resuming to the use of Argon based mixtures
 - More primaries
 - Studies in Israel and Portugal in parallel
 - Test beams are foreseen (PSI / CERN / ?)

Future plans - Towards 1 m² prototype

- Start with 300x300 mm² detector
 - Chamber, electrodes and a corresponding SRS anode should be ready soon
 - Solve technical difficulties
 - Maintain constant gaps and fields
 - Optimize segmentation to reduce the capacitance
 - •
 - Repeat characterizations studies
 - Gain stability
 - Gain Vs. rate
 - Response to HIPs
 - •
 - Consider resuming to the use of Argon based mixtures
 - More primaries
 - Studies in Israel and Portugal in parallel
 - Test beams are foreseen (PSI / CERN / ?)

$300 \times 300 \text{ mm}^2 \text{ protos}$

Shikma Bressler, Weizmann Institute of Science

CALICE collaboration meeting, March. 20, 2014

$300 \times 300 \text{ mm}^2 \text{ protos}$

• ⁵⁵Fe spectra

300×300 mm² protos - uniformity

• ⁵⁵Fe spectra

300×300 mm² protos - uniformity

- ~10% gain variations
- ~10% energy resolution variations
- Small gain difference between the two strips - to be understood and resolved

gain energy resolution Ne/(5%)CH₄ - flow: 50 cc/m THGEM voltage: 590 V - ⁵⁵Fe Ne/(5%)CH₄ - flow: 50 cc/m THGEM voltage: 590 V - 55 Fe energy resolution [%] 1600 1500 1400 1300 17 1200 16 strip 1 strip 1 1100 strip 2 strip 2 1000 15 2 2 0 8 10 12 8 12 6 point number point number 13 CALICE collaboration meeting, March. 20, 2014 Shikma Bressler, Weizmann Institute of Science

THGEM / MICROROC - Old results

• Standard THGEM: performance similar to MM

• WELL THGEM:

- The THGEM was operated in 150 GeV pion shower behind a 2λ Fe block in a very stable way
- THGEM chamber could be included in the DAQ of the 4 1x1 m² during the RD51 test beam

Setup assembled in WIS lab - study to be resumed

Future plans - Towards 1 m² prototype

- $300 \times 300 \text{ mm}^2$ detectors SRS readout (analog)
 - Optimize: segmentation, gap, HV configuration, resistive layer...
 - Characterize: uniformity (gain, energy resolution), proportionality
 - Test in beam
- THGEM/MICROROC
 - Study to operate
 - Optimize
 - Test in beam
- R&D on small protos
 - Long term operation: understand apparent gain variations
 - New resistive concepts
 - Resistive plate WELL with lower bulk resistivity