Roger Rusack – The University of Minnesota

A HIGH GRANULARITY CALORIMETER FOR CMS.

Contributing Institutions

Athens, Beijing, CERN, Demokritos, Imperial College, Iowa, LLR, Minnesota, SINP (Kolkata) & UC Santa Barbara

I will report on the work of many people from these institutions this list is growing and we welcome new members.

The LHC and HL-LHC Plans

The proposed CERN schedule discussed at the ECFA meeting last October.

3

Pile-Up

With a 25 ns bunch crossing interval the pileup will be <140> at a luminosity of 5×10³⁴ Hz/cm².

Endcap Calorimeters

1st

Muon

CSC

Both the endcap crystal calorimeter and the plastic scintillator calorimeters will need to be replace after LHC operations due to radiation damage.

University of Minnesota rusack@physics.umn.edu

3/19/14

HL-LHC environment

Neutron fluence will be ~3×10¹⁶ neutrons/cm² after 3,000 fb⁻¹ at the highest eta region of the EM calorimeter.

Absorbed dose will be in the region of 10⁶ Gy in the same region.

University of Minnesota

Challenges

- The HL-LHC is a machine to look for rare processes and to make precision measurements.
 - Capture as many of the VBF forward jets as possible in a single "crackless" calorimeter. This requires moving to higher eta the current boundary between the endcap and forward calorimeters.
 - Good energy em and hadronic energy resolution.
 "Good" means at least as good as our current detector.
 - Enable a powerful and flexible trigger

CMS Phase 2 Upgrades

Tracker

- Radiation tolerant high granularity less material
- Tracks in hardware trigger (L1)
- Coverage up to η ~ 4

Muons

- Replace DT FE electronics
- Complete RPC in forward region with new technology
- Investigate Muon-tagging up

to n ~ 4

Endcap Calorimeters

- Radiation tolerant higher granularity
- Investigate coverage up to η ~ 4
 Barrel ECAL
- Replace FE electronics

Trigger/DAQ

- L1 (hardware) with tracks and rate up ~ 500 kHz to 1 MHz
- Latency ≥ 10µs
- HLT output up to 10 kHz

https://cds.cern.ch/record/1605208/files/CERN-RRB-2013-124.pdf

We are investigating in detail the possibility of using a high granularity calorimeter with ~2.5M channels of silicon pads (5M total).

We expect that with such detailed information from the calorimeter, coupled with a precision silicon tracker, we will be able to measure physics objects with high precision.

Current Detector

An Si Based HGC CMS at the HL-LHC

OF MINNESOTA

Parameters

- Electromagnetic Calorimeter:
 - 31 layers of lead/copper total of 25 X_o
 - 11 layers of 0.5 X_0 /10 layers of 0.8 X_0 /10 planes of 1.2 X_0 .
 - Pad size 0.9 cm² for first 20 layers 1.8 cm² at back.
 - 420 m² of silicon pad detectors.
 - 3.7M channels.
- Front Hadronic Calorimeter
 - 4 interaction lengths.
 - 12 layers of brass/silicon.
 - Pad size is 1.8 cm²
 - 1.4M channels.
- Backing calorimeter
 - Five interaction lengths.
 - Radiation levels are much lower can use plastic scintillator or MPGD's. To be decided based on cost and performance.

Major Engineering Challenges

- 600 m² of Silicon in a high radiation environment.
 - Cost.
 - Very high radiation levels need to plan for 3x10¹⁶ neutrons in the highest
- Cooling.
 - We need a compact calorimeter with small gaps between absorber plates.
 - We need to operate at 30°C
 - Total power is ~100 kW.
- Data and Trigger
 - Channel count is 5M. Producing a prodigious amount of data.
 - Data used in the Level- 1 CMS event trigger

HGC Silicon Sensors

~ 10CM

Sensor Surface cm² Square Hexagonal 6" wafers ~ 100 ~ 130 8" wafers ~ 180 ~ 230

Single-Sided DC-Coupled p-on-n / n-on-n 200um / 100um active thickness

Measured @V_dep+5%, -20°C, scaled to +20°C

- Volume current scales with fluence:
- Scaling parameter independent of Sil material, oxygen concentration
- Scaling parameter agrees with previous measurements M. Moll, PhD thesis, Hamburg 1999
- Note: Increased current seen in strip sensor

$$\frac{\Delta I}{V} = \alpha \Phi_{eq}$$

- → Current/ fluences understood → Independent of material
- → Independent of polarity
- → Cold operation necessary!

Collected Charge from IR-TCT

→No difference found for MCz and FZ both N and P Weighting field and E-field in structured devices might lead to a different picture

UH

Readout - Ideas

- Front End Electronics.
 - Dynamic range ~ 1 10,000 mips.
 - Shaping time ~ 25 ns.
 - Noise floor ~ 1 mip.
 - Low power 15 mW/channel.
- Data links.
 - Use CERN LPGBTx (5 Gbps/3.2 Gbps) drive electical signal on Twinax or micro-coax to back of calorimeter.
 - Use Rad Hard FPGA (eg. IGLOO2) to convert to 10 Gbps link at back of calorimeter.

HGC Proposed FE architecture

C_{in} 100 ~ 200pF; τ ~ 10ns; ~ 1MIP -> 10kMIP On Chip digitization for each channel at 40MHz Sum 4(2) adjacent pads -> L1 Trigger primitives with 8 bit resolution Readout at 1MHz L1 accept rate with 12 bit resolution

Occupancy.

Exploit Low Occupancy Digitize only when there is a relevant signal present

Occupancy in 1cm² pads with <PU> = 140

rusack@physics.umn.edu

3/19/14

Cooling Options:

- CO2 bi-phase cooling.
 - Planned for CMS phase 2 tracke
 - High pressure good heat transfer.
- ATLAS thermo syphon with standard refrigerants.
 - Uses C_3F_8
 - Operates at 1 2 atm.

Without the luxury of switching of the electronics between bucnh crossings, cooling becomes a major engineering challenge for this detector.

Performance - I

Resolution of $20\%/\sqrt{E}$ stochastic Estimate constant term $\leq 1\%$.

200 GeV photon at η = 2.5 with 140 pileup events.

Performance-II

Evolving Mechanics and Cooling

Possible Phi-Sector Geometry

UNIVERSITY OF MINNESOTA

Organization of services within Sector will be studied with a mock-up

rusack@physics.umn.edu

Summary

- CMS is investigating building a silicon-based calorimeter for the forward region of CMS.
- There are many engineering challenges.
- We are benefitting from the work of CALICE/CLIC communities.
- There is a much work ahead and we welcome new collaborators.

