

Last results on HARDROC 3

OMEGA, 19/03/2014

OMEGA microelectronics group

Ecole Polytechnique CNRS/IN2P3, Palaiseau (France)

Organization for Micro-Electronics desiGn and Applications

HARDROC3

3rd generation chip for ILD

Independent channels (zero suppress)

I2C link (@IPNL) for Slow Control parameters and triple voting

❑ HARDROC3: 1st of the 3rd generation chip to be submitted

- analog part: extension of the dynamic
- PLL: integrated to generate fast clock internally
- Submitted in Feb 2013 (SiGe 0.35 μ m), funded by AIDA, received end of June 2013
- Die size ~30 mm² (6.3 x 4.7 mm²)
- Packaged in a QFP208
- HR3 will equip 2-3m RPC chambers

SIMPLIFIED SCHEMATICS

Slow Control

- Slow control common features:
 - Triple voting
 - Read back of control bit (also when chip running)
- Slow control access:

Clock Data

Classical shift register
 Test OK

Master

I2C serial link ------ See below

- Test OK

Write frame:

Read frame:

Pb: Data stuck to 0 inside the chip (buffer added by OMEGA to output the data)

 \Rightarrow I2C link test only possible with chip modification (FIB)

I2C Tests on FIB chips

FIB (1 cut) to isolate buffer HR3_03:

 \Rightarrow Only Write access possible (no acknowledge)

Other I2C tests:

- \Rightarrow Tests @ High/Low temperature
- $\Rightarrow\,$ I2C @ 400Khz with 500pF on Bidir data port

mega

Test OK

Analog Part: FSB Linearity

SCURVE measurements

PLL measurements

PLL can generate fast clock internally (40 MHz):

- \Rightarrow Multiplication factor is (N+1) / N is a SC parameter (1 to 31)
- \Rightarrow Output freq of PLL can go up to 80MHz (needed is 40-50 MHz)
- \Rightarrow Full chain tested with charge injected on one and readout

2,5MHz **>** 20 MHz

mega

Tests OK

PLL measurements

Lock time (Bias ON):

- \Rightarrow Green = PowerOnD / Blue = Out_PLL
- \Rightarrow Time needed to have a stable clock = 230 + 30 = 260 μ s

Other measurements:

 \Rightarrow PLL jitter < 150 ps

Digital: Memory mapping

E1 E0 P 576

E1 E0 P

 $E_1 \quad E_0 \quad P$

E1 E0 P

E1

E 1

E1 E0 P

0 0 0 P

0 0 0

Р

P

0

Digital: zero suppress

• Zero suppress (only hit channels are readout): test OK

Setup	Slow Co	ntrol 1	S	ow Con	trol 2	SCA	Read,	Temp.	FPGA	A Confi	guratio	on	Info H	ARDRO	IC3	I2C te	st	Info po	:b I/O	Info	pcb T	est	Mixe	d Test:	S-Cur	ve (Thre	shold)
Mixed Test: S-Curve (Threshold) all Ch. Analogue Test: DA				AC	Analogue Test: DC					External ADC External ADC c					calib Digital ASIC Debug / DAQ												
S	Step by Step DAQ Reset ASIC Digital Start Acquisition FPGA External Trigger Start ReadOut1 Start ReadOut2				ChipSat End ReadOut 1 End ReadOut 2				Frame received OK ? OK Nb of bits read in ASIC RAM 304 Chip ID 2 100111				AM	Automatic DAQ Automatic DAQ Automatic DAQ Start Acq. Sequence ChipSatb must be enabled SlowClock -> CLK_GENE_EXT Nb of Acquisitions 10 TimeOut for 1 Acq/Conv/R0 10ms (Slow Clock @ SMHz) Current Acquisition						Data	ata Analysis Clean DAQ data folder Analyze saved data now ! Files data loading						
ADIC	ASIC MEILINY (Kaw Data) Decoded Ceta																										
	Signal injected only in ch 20 and 43																										
	HR3 Decoded Data																										
Ch	annel #	20	20	20	20	20	20	20	20 4	43	43	43	43	43	43	43	43	0	0	0	0	0	0	0	0	0	
BC	ID	3753	3253	2753	2253	1753	1253	753	253 3	3753	3253	2753	2253	1753	1253	753	253	0	0	0	0	0	0	0	0	0	
E1	/ EO	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	1

- Roll mode SC : test OK
 - If RollMode = "0" → Backward compatibility with 2Gen ROC chips behavior
 - Only the N first events are stored
 - If RollMode = "1" → 3Gen ROC chips behaviour
 - Use the circular memory mode
 - Only the N last events are stored
- "Noisy Evt" SC: 64 triggers => Noisy event => no data stored : test OK
- "ARCID" SC (Always Read Chip ID): test OK
 - If ARCID = 0 \rightarrow Backward compatibility: No event \rightarrow No readout
 - − If ARCID= 1 → New behavior: No event → Read CHIP ID

Power consumption

Power consumption in ILC mode:

- \Rightarrow Power measured on AlimChip over 1 Ohm resistor
- ⇒ Buffer/SSH/ Widlar/OtaQ/OtaFSB/Temperature OFF
- \Rightarrow PII/FastClock LVDS = 0/1 if clocks from LVDS else 1/0
- \Rightarrow EnPllOut / testOtaQ / ValdSS are disabled
- \Rightarrow StartAcq On

Power supply	HR3 With Clk from LVDS (Slow clock 5M + 40M) Consumption in μW / channel	HR2 With Clk from LVDS (Slow clock 5M + 40M) Consumption in μW / channel					
PowerOnA (Analog)	1650	1325					
Only PowerOnADC (OTA)	0	0					
Only PowerOnDAC	55	50					
Only PowerOn D	725	50					
Power-On-All	2430	1425					
Power-On-All @ 0,5% duty cycle	12,2	7,5					

Notes:

- \Rightarrow Analog: increase due to extended dynamic range
- \Rightarrow Digital: increase due to zero suppress
- \Rightarrow If the PLL is activated, +3% on the power consumption

nega

Summary and next steps

- Good analog performance:
 - dynamic range extended up to 50 pC
 - PLL alternative for fast clock
- Preliminary good digital performance
 - Zero suppress, roll mode, ARCID mode, Noisy evt mode tested successfully on testboard
 - External trigger available to be able to check the status of each channel
- Slow control:
 - Classic shift register, Triple voting and Read back are OK
 - I2C problem understood and tested
- Next steps
 - More intensive tests on zero suppress and analog part (multiple channels)
 - Production run expected end 2014
 - 2-3m long RPC chambers to be built and equipped with HR3 in 2015
 - Possible improvements: PLL start boost, power consumption

eqa