

Development of high rate RPCs

Lei Xia

Argonne National Laboratory

RPC rate capability

- Particle flux through RPC → Signals → Current through detector, in particular through resistive electrode (glass/Bakelite) → Voltage drop on resistive electrode → Reduced voltage on gas volume → Lower gas gain, lower efficiency → limiting factor for rate capability
- For stable particle flux, after transient, the voltage on gas volume u_{1f} is *:

- Ways to improve RPC rate capability
 - $\rho \downarrow$: lower resistivity electrode material
 - $d_2 \downarrow$: reduce thickness of electrode
 - c ↓: operate with lower gas gain, together with more sensitive readout

Focus of this talk

^{*} For details, please see B. Bilki, et al., "Measurement of the Rate Capability of Resistive Plate Chambers" JINST 4 (2009) P06003 CALICE Collaboration Meeting, ANL, 2014

Development of low resistivity Bakelite

- USTC (University of Science and Technology of China) engaged Chinese Bakelite manufacturer to work on R&D of low resistivity Bakelite material
- First batch of boards delivered
 - − Bulk resistivity $10^8 10^{10} \Omega \cdot \text{cm}$
 - Visual inspection suggests good quality

errey Barrence material								
Serial	Thickness	Resistivity	Temperature	Humidity				
number	(mm)	(Ω•cm)	(°C)	(%)				
15001	1.567	8.00E+09	26.1	35				
15002	1.495	1.45E+10	26.4	35				
15003	1.557	2.43E+10	26.8	35				
15004	1.549	2.12E+10	26.9	35				
15005	1.426	4.79E+10	27.1	35				
15006	1.417	5.06E+10	27.1	35				
15007	1.423	4.97E+10	27.3	30				
15008	1.448	5.06E+10	27.4	30				
15009	1.433	1.43E+09	24.2	30				
15010	1.422	5.95E+10	24.9	30				
20001	2.046	3.61E+10	24.8	30				
20002	1.961	8.79E+09	25.1	30				
20003	2.074	1.54E+09	25.6	30				
20004	2.058	3.92E+09	25.6	30				
20005	2.136	1.74E+10	26.2	30				
20006	1.876	1.83E+10	26.4	30				
20007	2.127	6.17E+08	26.7	30				
20008	1.573	9.57E+08	26.7	25				

ANL, U. Michigan and IPAS participate the development as well.

Development of low resistivity Bakelite

- ANL and USTC each built several prototype RPCs, with modified DHCAL design
 - Extruded PVC frame, ~1.2 mm gap
 - Added spacers to deal with board warpage

Cosmic ray test at ANL

Chambers made with low resistivity bakelite work very well, stabled after running 2 days.

--Chamber A=34Hz/cm²

Noise Rate

--Chamber B=24Hz/cm²

Red Point: Chamber A

Green Point: Chamber B

Chamber B

CALICE Collaboration Meeting, ANL, 2014

GIF test setup

- Radiation Test (Cs 137) at CERN
- Gas: 94.7% C2H2F4,
 5% C4H10, 0.3% SF6
- Signal pick up board: 1 small(for reference chamber), 1 large(for test chamber), strip width=1.2mm, 2-end readout.
- MDT DAQ system, 8
 mezzanine cards(7x24
 channels, 1 for trigger).
 The accuracy of TDC is
 0.78125ns.

Some GIF test results

- With source ON, signal charge decrease rather rapidly
- Rate capability NOT as high as expected from previously measured resistivity
- Later confirmed that the Bakelite resistivity creeps up over time

Red Line: Source On Black Line: Source Off

Bakelite aging study

- Bakelite resistivity stable over time, if no current is applied
- When a steady current is maintained through the sample, resistivity go up over time (carrier being drained)
- More R&D is needed

Development of low resistivity glass

- Glass electrode has distinct advantages over Bakelite
 - More stable material properties
 - Better surface quality and flatness
 - However, low resistivity glass currently available is quite expensive
- ANL engaged Iowa University and COE College to develop low resistivity glass
 - COE College (Cedar Rapids, Iowa) is the expert in glass related research
 - Small samples made/tested at COE college in 2012 → 'any resistivity is achievable'
 - First 'large' samples made at COE college, tested at ANL in 2012 2013
 - Second 'large' samples made at COE college late 2013, being tested at ANL

Conductivity			in S-cm				
	0%	5%	10%	15%	20%	25%	30%
100 V	4.87E-09	2.06E-09	2.01E-09	3.14E-09	5.79E-08	6.19E-08	7.01E-08
200 V	1.06E-08	4.74E-09	6.47E-09	7.80E-09	6.14E-08	6.33E-08	7.16E-08
400 V	1.58E-08	6.70E-09	1.17E-08	1.32E-08	6.89E-08	6.54E-08	7.26E-08
800 V	1.96E-08	8.10E-09	5.24E-08	2.77E-08	9.85E-08	6.97E-08	7.52E-08

	5%	10%	20%	30
100	2.87E-04	1.16E-05	2.38E-04	1.48E-03
200	1.38E-05	1.05E-05	1.14E-05	1.56E-03
400	7.02E-06	5.44E-06	5.83E-06	1.55E-03
800	3.61E-06	2.79E-06	2.97E-06	2.97E-06

First batch of 'large' glass samples

- 6 glass samples were produced at COE college and were sent to vender for polishing
- Only 2 (partially) survived polishing, and were cut to 6 cm x 6 cm squares
- Resistivity measurement reveals that
 - Bulk resistivity is around 10^8 - 10^9 Ω ·cm, exactly what we requested
 - However, some impurity creates low resistance path through glass
- Went ahead to made RPC prototype

Two sides of sample 1

Two sides of sample 2

RPC prototype

- The chamber construction went smoothly
- HV test shows large dark current starting at ~ 4 kV: seems to have trouble controlling discharge in the gas volume
- Took apart the RPC, the marks on the inside surfaces verified the assumption

Second batch of 'large' samples

- Based on the results of first batch, we requested the second batch to have better uniformity and the target resistivity was said to be $10^{10} 10^{12}$ Ω·cm
- 4 large samples (~ 12 cm x 24 cm) were made at COE college, with very much improved quality
- Unfortunately, all 4 samples were broken in the polishing process. But we managed to recover some relatively large fragments

CALICE Collaboration Meeting, ANL, 2014

RPC prototype

- Resistivity is measured to be $1.5/2.0 \times 10^{11} \,\Omega$ ·cm (only measured two samples out of many), again exactly what we requested
- 3 small prototype RPCs were built and HV tested all of them can hold > 7 kV with minimum dark current. No sign of any break down / spark.
- The gap size is ~1.1 to 1.2 mm, a decent avalanche signal should show up at ~ 6.3 kV,
 with ~90% efficiency using DHCAL readout

 Due to the small size of these RPCs, we plan to skip cosmic ray tests and go directly to test beam at Fermilab.

HV test

Development of new electrode structure

- New type of Bakelite board was made with embedded resistive coating, under collaboration with USTC, U. Michigan, IPAC
- Effective electrode thickness is reduced by a factor of ~10 → expect ~10 time higher rate capability
- Two prototype RPCs were constructed at ANL
- Prototype RPCs were tested at ANL and CERN (GIF)

Cosmic ray test at Argonne

CERN GIF test

- One prototype RPC with the new Bakelite structure was tested at GIF
- Rate capability is better than the 'low resistivity' Bakelite RPC prototypes
- Later Argon measurements confirmed a factor of ~10 reduction in effective R
- Further development has been agreed upon among collaborators

Important message:

The new structure works!

Summary

- ANL group has engaged collaborators to develop RPC with higher rate capability with several different approaches
 - Low resistivity Bakelite:
 - sample/prototype produced/tested, long term stability is still an issue.
 - Low resistivity glass:
 - Sample/prototype produced
 - Test beam coming up in two weeks
 - New Bakelite structure:
 - Concept proved
 - More development on the way

We have a lot of progress on all fronts, more is coming

