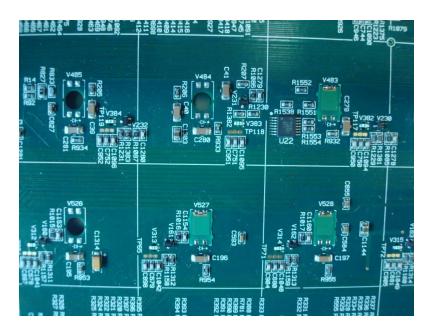
NIU Integrated Readout Layer

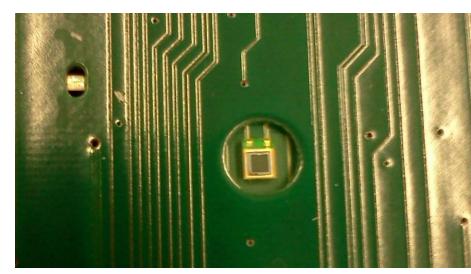
Kurt Francis NICADD Northern Illinois University

March 19, 2014

Integrated Readout Layer (IRL)

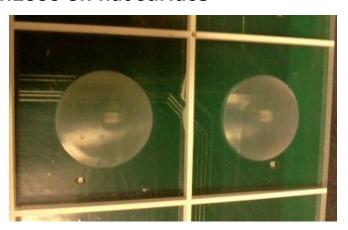

- Background and Motivation
- NIU's IRL using HBU board
- Megatiles
- Initial tests using Hamamatsu S10362 and LED calibration
- First tests with S12571 MPPC
- Stuff HBU board with 44 MPPC
- Set up scanning with Sr90 source
- New 9x11 megatile
- Summary and next steps

Motivation


- Seeking ways to reduce the construction cost of large, granular calorimeters
- Use surface mount devices
- Mega-tiles consisting of many small tiles fabricated together
- Direct coupling to eliminate wavelength shifting fibers
 - But response over a flat cell would be non-uniform -> leads to a concave dimple to make response of the cell uniform

MPPC Mounting and Installation

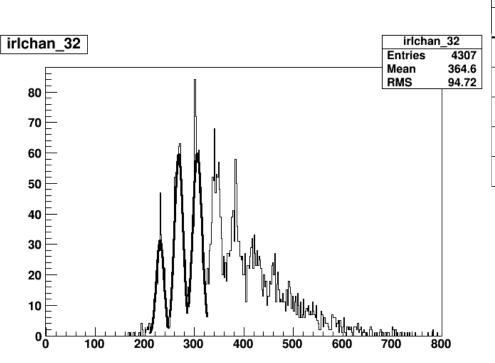
- Hamamatsu S10362 SMD MPPCs mounted on small flex circuits
- Mounted in holes on HBU2 board so that sensitive surface of MPPC is on opposite side of circuit board as ICs
- -Each MPPC has its own LED (plan to test one LED for 4 MPPC which worked with our original design)
- -(Cannot populate area behind SPIROC chips because of HBU2 design)





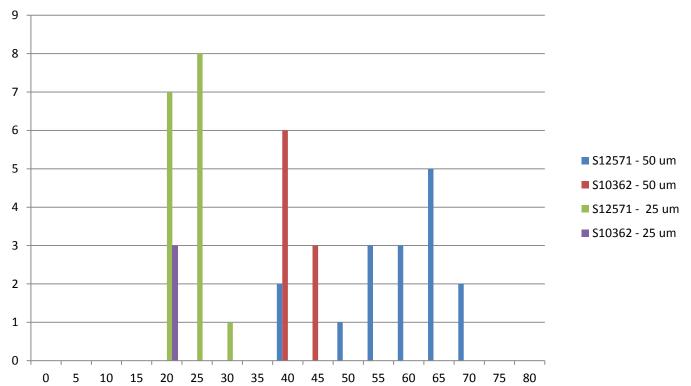
"Megatile" with Concave Dimple

- -Scintillator "Megatile"
 - 3.00 mm thick with 0.05 mm accuracy
 - 30.15 x 30.15 mm cells
 - optically isolated with white epoxy
- -Cells have a concave dimple machined into cast scintillator to improve the uniformity of the response
- -Aligned with pins
- -The Megatile is milled from one solid piece of cast polyvinyltolulene scintillator for each HBU board
- -Each HBU board has four 6x6 cell Megatiles
- -Megatile is rigid and provides support for circuit board
- -Reflective VM2000 on flat surface



Find Single Photoelectron Spectra

- -Take separation of peaks in ADC counts to be "Gain"
- -50 micron Pixel have average gain of 40 -25 micron Pixel MPPCs have lower gain
- and it is difficult to distinguish peaks but useful for signals with wide range



SPIROC	CHAN	MPPC#	Туре	"Gain"
2	9	230	-50	38
2	3	231	-50	40
2	10	232	-50	37
2	4	233	-50	40
4	31	234	-50	36
2	11	235	-50	44
2	5	236	-50	43
4	30	237	-50	44
1	6	238	-50	
1	0	239	-50	
3	35	13	-25	???
3	34	14	-25	
2	32	15	-50	37
2	25	10	-25	18
2	30	11	-25	18
2	31	12	-25	17
2	24	9	-100	92

MPPC S12571

- Hamamatsu's new PDE specs exclude effects of cross-talk and after-pulsing
- Eight 25um S12571 and eight 50um MPPCs
- Cover center part of HBU board and a large fraction of planned 9x11 megatile
- Had to modify power supply board to have lower base voltage for new batch of MPPCs

Distribution of Sensor Gain (in ADC counts)

average
57
40
22
18

Sensor Layout

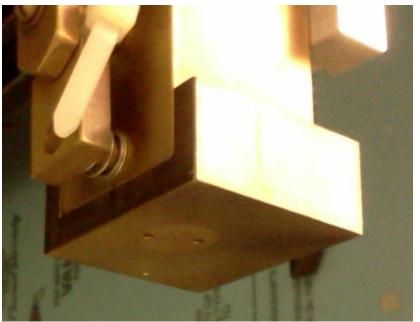
-Added more 50 um pixel MPPCs to give a total of 44

Green: outline of planned megatile

Blue: 50um MPPC

Purple: 25um MPPC

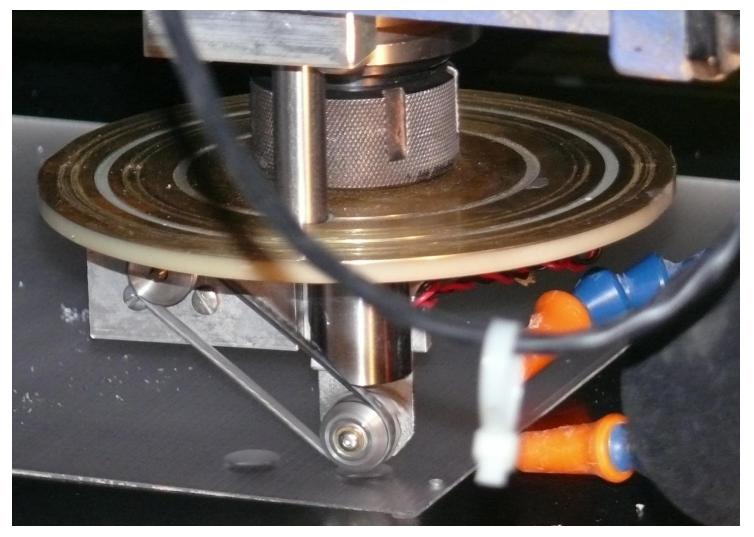
Red: holes for alignment pins



Scan Tile with Source

- Two axis control
- Sr90 source
- Controlled by Labview Software
- Three collimator options available
 - wide
 - pin hole
 - slit

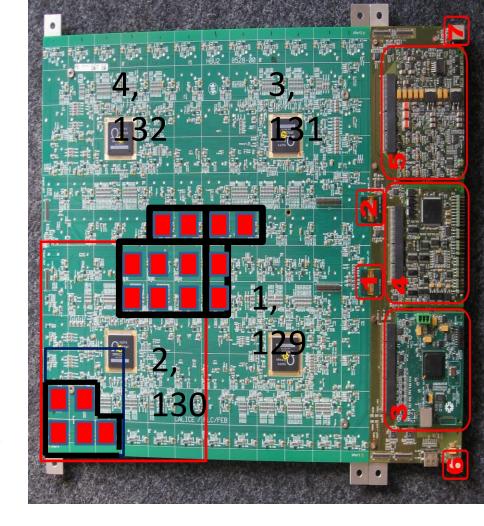
Scan Tile with Source


- First attempts to integrate HBU labivew software with 2 axis controller
- Need to configure software (thresholds, trigger widths)
- First reading shown...
- Beta/gamma from source goes through
 PC board (source PC board –
 scintillator)
- May try with no scintillator localize sensor
- Do scans with pin-hole collimator and slit

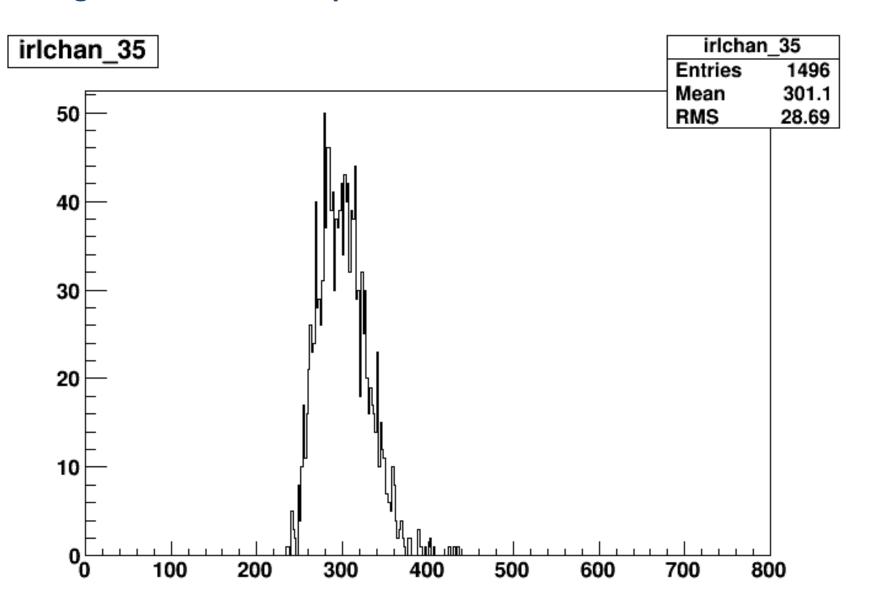
Fly Diamond Cutter for Spherical Dimple Suitable for Production a Single Cell or Array of Cells

The First Step (Dimples) in Mechanically Produced Array

Ready for the Final Cutout


Summary and Next Steps

- Basic LED calibration functions working with HBU board with MPPC with dimpled megatile
- 44 MPPC installed and source scanning setup at NICADD
- Need to set DAQ configuration (thresholds, etc.)
- Scans with Sr90 source
 - With no tiles
 - With existing tiles
 - With new 9x11 Megatiles
- Complete calibration
- Get second HBU board (with 25um pixel MPPCs) working and calibrated
- Eventually place in test beam...


Test Configuration

HBU2 tile map (top view)

5	4	3	2	1.	0	5	4	3	2	1	0 T2	93
11	10	9	8	7	6	11	10	9	8	7	6	
17	16	15	14 0C2_4	13	12	17	16	15	14 0C2_3	13	12	
23	22	21	20	19	18	23	22	21	20	19	18	
29	28	27	26	25	24	29	28	27	26	25	24	
35	34 : T3	33	32	31	30	35	34	33	32	31	30	Signal
0	1	2	3	4	5	0	11	2	3	4	5	
6	7	8	9	10	T5 11	6	7	8	9	10	11	Power
12	13	14	15	16	17	12	13	14	15	16	17	
18	19	20	21	22	23	18	19	20	21	22	23	
24	25	26	27	28	29	24	25	26	27	28	29	1
30 _T	631	32	33	34	35	430	31	32	33	34	35	

Single Photoelectron Spectra of 25 um MPPC

