Study of Strip-HCAL

19th March 2014 K. Kotera, Shinshu University

Motivation

- Minimum pixel size of the Digital HCAL is 10 x 10 mm² so far.
- Digital HCAL has good performance on position measurement,
- Analog HCAL has good performance on energy measurement,
- and the Semi-digital HCAL is being developed adding three levels of energy discriminations to improve the energy resolution.
- We suggest another way to make 10 x 10 mm² segmented "full analog" HCAL as an AHCAL option by using scintillator strip technology.
- To make such an HCAL with 10 x 90 mm² scintillator strips, there is no more additional requirement of the cost nor mechanical technology from the current analog HCAL with 30 x 30 mm² tiles.
- Challenge is to extract the best performance from two alternate directions of strips in x and y.

ECAL case with Strip Splitting method Jet energy resolution (with 30x30mm² AHCAL)

SSA makes JER of strip ECAL close to 5 x 5 mm² tile ECAL Difference is only 0.2-0.25%.

additional option: alternate tile and strip

Alternately replacing with 5x5mm² tile layers.

Alternately replacing with large tile layers.

10x10 or 15x15 mm²

1. SSA to 15x15mm² tile layers by using strip layers

With Tile layers

ScECAL alternately replaced strip layers with $10x10 \text{ mm}^2$ layers has similar energy resolution to $5x5 \text{ mm}^2$ tile ScECAL (also DBD result with SiW ECAL) at $E_{jet} \le 100 \text{ GeV}$, only 0.1% degrades at high energy.

Alternate Strip-Tile HCAL

10 x 90 (or 180) mm² + 30 x 30 mm² Same size of lateral area of cells as 30 x 30 mm² current AHCAL

Alternate Strip-Tile HCAL

In this talk we use only 10 x 90 mm² + 10 x 10 mm²

Di - K_L separation (two 5 GeV K_L)

Fraction of events successfully reconstructed as two K_L events

With default PandoraPFA parameters.

Until distance of 200 mm,

 10×10 and alt.($10 \times 90 + 10 \times 10$) mm², have better performance than 30×30 mm², events

π+-K_L separation 30 GeV 10 GeV

Energy mean of neutral hadron of one - neutral hadron events

until 300 mm distance 10x10 mm² segmentation has better energy

One faked neutral hadron is created in 10x10 mm² segmentation

Di-muon separation

--- Sensitive to the fragmentations ---

fraction of successfully reconstructed two muon events without any other fragmentation

complementary set of this is one additional neutral hadron events

Di-muon separation

--- Sensitive to the fragmentations ---

fraction of events having one excess neutral hadron

10 x 90 strip HCAL with SSA makes a lot of faked neutral hadrons

Di-muon separation

energy of fake neutral hadrons is ~ 0.8 GeV.

Summary of particle separation

- 1. HCAL of 10 x 10 mm² segmentation including strip HCAL with SSA has better ability of particle separation than 30 x 30 mm².
- 2. 10 x 10 has tendency to make fake neutral hadrons, especially strip segmentation even with SSA.
- 3. This phenomenon is moderated by tile layers interleaved into strip layers.
- 4. We will optimize PandoraPFA tuning for fine granular HCAL as a next step.

Jet energy resolution without new optimization

Without any new tuning, even 10 × 10 mm² tile AHCAL does not have better energy resolution than 30 × 30 mm² tile AHCAL has.

So far, we've not yet succeeded to optimize it....

Hardware development

Scintillator strip

Uniformity of response

20% loss

Cross-section side at 100 mm far from MPPC side edge.

2 mm thick scintillator

10% with 90 mm strip

Effect of WLS fiber is pretty large for 2 mm thick scintillator

HBU for strip AHCAL

Only alignment will be changed from the tile 30×30 mm² HCAL

 $10\times90 \text{ mm}^2\times 144 \text{ channel}$ $10\times180 \text{ mm}^2\times 72 \text{ channel}$

4 Chips / HBU

HBU

 $10 \times 90 \text{ mm}^2 \times 144 \text{ channel}$

10×180 mm² × 72 channel

4 Chips / HBU

2 Chips / HBU

As first step TB before HBU

 $10 \times 90 \text{ mm}^2 \times 36 \text{ channel}$

 10×180 mm² × 18 channel

× 2 layers(x and y)

× 2 layers(x and y)

MPPC cables

Setup and DAQ

Testbeam at CERN

From Felix's slides at CLICWS

applied for 2x 2weeks @ PS in fall 2014

Testbeam at CERN

From Felix's slides at CLICWS

applied for 2x 2weeks @ PS in fall 2014

Between EBU (ScECAL) and AHCAL

Lessen of ROC chips Muon calibration Response uniformity

....

Summary

- 1. We are developing strip AHCAL.
- Strip AHCAL has potential to have good position resolution without degrading of the energy resolution of single cluster.
- 3. Strip splitting algorithm for the HCAL is implemented.
- 4. All 10 x 10 mm² segmentation including strip and alternate strip and tile have good separation ability.
- 5. All 10 x 10 mm² segmentation have tendency to make excess fragmentations.
- 6. need optimization of parameters in PFA.
- 7. We would like to have 180 × 180 mm² x 4-6 layers test beam at CERN Autumn 2014.

Back up

Two-layer trial

We've already constructed a two-layer prototype in the frame of ScECAL 2nd prototype with 10 mm x 180 mm strips.

For the single muons, 10 mm x 10 mm granularity is not difficult with two layers.

Distribution of the zenith angle measured by this two-layer Strip - AHCAL prototype is consistent with MC result (by M. Harada 2011).

by M. Harada

Clear muon track appears with Strip Splitting Algorithm

10 mm x 90 mm strips in HCAL.

A famous plot in the LOI (this is the reason why AHCAL tiles: 30 x 30 mm²)

100 GeV Jets have a room to make evaluation to use 10 mm x 10 mm segmentation, so I will show the case we use 100 GeV uds jet events to evaluate the performance.

Plan

- 1. Tune of PFA to get better JER of 10x10mm² than 30x30mm²,
- 2. comparison of the performance of 10 x 10 mm² and 30 x 30 mm² with severer conditions in order to show the effects of finer segmentation,
- 3. endcap issues.
- 4. combinations of tile layers and strip layers,

- 5. construction of a test beam module.
 - strip size are decided according to the simulation results.

without the strip splitting.

White arrows show lacks of hit in the track and the circles show strange hits.

I'm afraid bugs, but I've not yet found them.

with SSA

Strip Ecal reconstruction with the strip splitting algorithm

deposited energy on a strip delivered into virtual square cells

Strip Ecal reconstruction with the strip splitting algorithm

deposited energy on a strip delivered into virtual square cells

Strip Ecal reconstruction with the strip splitting algorithm

deposited energy on a strip delivered into virtual square cells

positions and energies of all virtual cells are fed into the PandoraPFA program

Comparisons of performance btwn. w/ SSA and w/o SSA

Left: position accuracy and precision Error bar (RMS) < 1 mm w/ SSA.

Middle: Energy is recovered correctly w/ SSA.

Right: Jet energy resolution is kept w/ SSA.