Study of Strip-HCAL

19th March 2014
K. Kotera, Shinshu University

Motivation

- Minimum pixel size of the Digital HCAL is $10 \times 10 \mathrm{~mm}^{2}$ so far.
- Digital HCAL has good performance on position measurement,
- Analog HCAL has good performance on energy measurement,
- and the Semi-digital HCAL is being developed adding three levels of energy discriminations to improve the energy resolution.
- We suggest another way to make $10 \times 10 \mathrm{~mm}^{2}$ segmented "full analog" HCAL as an AHCAL option by using scintillator strip technology.
- To make such an HCAL with $10 \times 90 \mathrm{~mm}^{2}$ scintillator strips, there is no more additional requirement of the cost nor mechanical technology from the current analog HCAL with 30 $\times 30 \mathrm{~mm}^{2}$ tiles.
- Challenge is to extract the best performance from two alternate directions of strips in x and y.

ECAL case with Strip Splitting method Jet energy resolution (with $30 \times 30 \mathrm{~mm}^{2}$ AHCAL) $Z^{\prime} \rightarrow q \bar{q} \quad q=u, d, s$

SSA makes JER of strip ECAL close to $5 \times 5 \mathrm{~mm}^{2}$ tile ECAL Difference is only 0.2-0.25\%.

additional option: alternate tile and strip

Alternately replacing with $5 \times 5 \mathrm{~mm}^{2}$ tile layers.

note:
merit of orthogonal setting of strip layers is not used.

Alternately replacing with large tile layers.

10×10 or $15 \times 15 \mathrm{~mm}^{2}$

How to reconstruct with large tile layers

How to reconstruct with large tile layers

1. SSA to $15 \times 15 \mathrm{~mm}^{2}$ tile layers by using strip layers

How to reconstruct with large tile layers

How to reconstruct with large tile layers

1. SSA to $15 \times 15 \mathrm{~mm}^{2}$ tile layers by using strip layers
2. SSA to strip layers by using virtual cells in tile layers

With Tile layers

ScECAL alternately replaced strip layers with 10x10 mm² layers has similar energy resolution to $5 \times 5 \mathrm{~mm}^{2}$ tile ScECAL (also DBD result with SiW ECAL) at $\mathrm{E}_{\mathrm{jet}} \leqq 100 \mathrm{GeV}$, only 0.1% degrades at high energy.

Alternate Strip-Tile HCAL

as a shower start finder
10×90 (or 180) mm ${ }^{2}+30 \times 30 \mathrm{~mm}^{2}$ Same size of lateral area of cells as 30 x $30 \mathrm{~mm}^{2}$ current AHCAL

Alternate Strip-Tile HCAL

In this talk we use only
$10 \times 90 \mathrm{~mm}^{2}+10 \times 10 \mathrm{~mm}^{2}$

Di - Kı separation (two 5 GeV KL$)$

Fraction of events successfully

 reconstructed as two Kl events

With default PandoraPFA parameters.

Until distance of 200 mm ,
10×10 and alt. $(10 \times 90+10 \times 10) \mathrm{mm}^{2}$, have better performance than $30 \times 30 \mathrm{~mm}^{2}$, events

Energy mean of neutral hadron of one - neutral hadron events

> until 300 mm distance $10 \times 10 \mathrm{~mm}^{2}$ segmentation has better energy

One faked neutral hadron
is created in $10 \times 10 \mathrm{~mm}^{2}$
segmentation

Di-muon separation

--- Sensitive to the fragmentations ---

fraction of successfully
reconstructed two muon events without any other fragmentation
complementary set of this is one additional neutral hadron events

Di-muon separation

--- Sensitive to the fragmentations ---

fraction of events having one excess neutral hadron
10×90 strip HCAL with SSA
makes a lot of faked neutral
hadrons

Di-muon separation

energy of fake neutral
hadrons is $\sim 0.8 \mathrm{GeV}$.

Summary of particle separation

1. HCAL of $10 \times 10 \mathrm{~mm}^{2}$ segmentation including strip HCAL with SSA has better ability of particle separation than $30 \times 30 \mathrm{~mm}^{2}$.
2. 10×10 has tendency to make fake neutral hadrons, especially strip segmentation even with SSA.
3. This phenomenon is moderated by tile layers interleaved into strip layers.
4. We will optimize PandoraPFA tuning for fine granular HCAL as a next step.

Jet energy resolution without new optimization

Without any new tuning, even $10 \times 10 \mathrm{~mm}^{2}$ tile AHCAL does not have better energy resolution than $30 \times 30 \mathrm{~mm}^{2}$ tile AHCAL has.

> So far, we've not yet succeeded to optimize it....

Hardware development

Scintillator strip

Uniformity of response

HBU for strip AHCAL

Only alignment will be changed from the tile $30 \times 30 \mathrm{~mm}^{2} \mathrm{HCAL}$ $10 \times 90 \mathrm{~mm}^{2} \times 144$ channel
 $10 \times 180 \mathrm{~mm}^{2} \times 72$ channel

4 Chips / HBU
2 Chips / HBU

HBU

$10 \times 90 \mathrm{~mm}^{2} \times 144$ channel

4 Chips / HBU
$10 \times 180 \mathrm{~mm}^{2} \times 72$ channel

2 Chips / HBU

As first step TB before HBU

$10 \times 90 \mathrm{~mm}^{2} \times 36$ channel

$\times 2$ layers(x and y)
$10 \times 180 \mathrm{~mm}^{2} \times 18$ channel

$+$

MPPC cables

$10 \times 90 \mathrm{~mm}^{2} \times 36$ channel

4-6 -layer stack
ScECAL physics prototype 240 cables but ~ 12 cables in this TB.

Setup and DAQ

Testbeam at CERN

From Felix's slides at CLICWS

- applied for 2x 2weeks @ PS in fall 2014

Testbeam at CERN

From Felix's slides at CLICWS

- applied for 2x 2weeks @ PS in fall 2014

Between EBU (ScECAL) and AHCAL

Lessen of ROC chips
Muon calibration
Response uniformity

Summary

1. We are developing strip AHCAL.
2. Strip AHCAL has potential to have good position resolution without degrading of the energy resolution of single cluster.
3. Strip splitting algorithm for the HCAL is implemented.
4. All $10 \times 10 \mathrm{~mm}^{2}$ segmentation including strip and alternate strip and tile have good separation ability.
5. All $10 \times 10 \mathrm{~mm}^{2}$ segmentation have tendency to make excess fragmentations.
6. need optimization of parameters in PFA.
7. We would like to have $180 \times 180 \mathrm{~mm}^{2} \times 4-6$ layers test beam at CERN Autumn 2014.

Back up

Two-layer trial

We've already constructed a two-layer prototype in the frame of ScECAL 2nd prototype with $10 \mathrm{~mm} \times 180 \mathrm{~mm}$ strips.

For the single muons, $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ granularity is not difficult with two layers.

Cosmic ray muons
Distribution of the zenith angle measured by this two-layer Strip AHCAL prototype is consistent with MC result (by M. Harada 2011).

Clear muon track appears with Strip Splitting Algorithm

after SSA : x - y plane

after SSA : y - z plane

A famous plot in the LOI

(this is the reason why AHCAL tiles: $30 \times 30 \mathrm{~mm}^{2}$)

100 GeV Jets have a room to make evaluation to use 10 mm x 10 mm segmentation, so I will show the case we use 100 GeV uds jet events to evaluate the performance.

Plan

1. Tune of PFA to get better JER of $10 \times 10 \mathrm{~mm}^{2}$ than $30 \times 30 \mathrm{~mm}^{2}$,
2. comparison of the performance of $10 \times 10 \mathrm{~mm}^{2}$ and 30 $x 30 \mathrm{~mm}^{2}$ with severer conditions in order to show the effects of finer segmentation,
3. endcap issues.
4. combinations of tile layers and strip layers,

5. construction of a test beam module.

- strip size are decided according to the simulation results.

without the strip splitting.

White arrows show lacks of hit in the track and the circles show strange hits.

I'm afraid bugs, but l've not yet found them.

with SSA

Strip Ecal reconstruction with the strip splitting algorithm

deposited energy on a strip delivered into virtual square cells

Strip Ecal reconstruction with the strip splitting algorithm

deposited energy on a strip delivered into virtual square cells

U5 U6 U7

12,3456789


```
    D4 D5 D6
a particle
```


Strip Ecal reconstruction with the strip splitting algorithm

deposited energy on a strip delivered into virtual square cells

positions and energies of all virtual cells are fed into the PandoraPFA program

Comparisons of performance btwn. w/ SSA and w/o SSA

Energy resIn. 100 GeV Jet

Left: position accuracy and precision Error bar (RMS) < 1 mm w/ SSA.

Middle: Energy is recovered correctly w/ SSA.
Right: Jet energy resolution is kept w/ SSA.

