

Study of the response of the CALICE Si-W ECAL physics-prototype to positrons

CALICE Collaboration Meeting @Argonne 19-21 March 2014

Kyushu University Yohei Miyazaki

Contents

- Motivation
- Update of calibration constant
 - energy linearity, energy resolution
- Monte Carlo simulation
- Estimation of systematic error
 - shower distance to the gap
 - MIP threshold
 - binning
- Summary

Motivation

- The CALICE Si-W ECAL physics prototype was constructed and tested.
 - the first beam test was conducted at CERN in 2006 using electron beams (6-45 GeV).
 - the second beam test was conducted at FNAL in 2008 using positron beams (4-20 GeV).
- * We analyzed the prototype test beam data taken at FNAL in 2008.
- * We want to evaluate linearity and energy resolution for positrons and to compare the prototype response to positrons and electrons.

Update of Calibration Constant

- * There was mis-calibration in the bottom slab's modules.
 - →We re-reconstructed the data with new calibration constants and rechecked the energy linearity and resolution.

Performance Study

- * We rechecked the energy linearity and resolution.
 - energy resolution

stochastic term:

 $16.51\pm0.35(\text{stat.})\% \rightarrow 16.67\pm0.30(\text{stat.})\%$

constant term:

 $1.90\pm0.15(stat.)\% \rightarrow 1.75\pm0.24(stat.)\%$

energy linearity

the deviations from linear function is less than 0.5 %

Energy resolution

Deviations from linear function

MC Simulation

Analysis setup

- calice soft : v04-07

- ilcsoft : v01-17-03

Mokka Detector Model: TBFnal0508_p0709

* MIP Calibration: 32 GeV muon fitted with the landau function and extracted the MPV value.

GeV to MIP conversion factor

1 MIP = 0.000156 GeV

Beam Position

* We adjusted beam position of MC to that of the beam data by using single hit in a first layer.

Beam momentum spread

2.7% for 4, 6 GeV

2.3% for 8, 12, 20 GeV

MC result

- We compared a energy distribution of MC with that of the test beam data.
- * A mean of the MC is about 15% lower than that of test beam data and distribution is wider.
 - →We scaled up the MC and adjust the mean value.

MC results

- * We compared a energy resolution of the MC with that of the data.
 - There is 5% difference on stochastic term between data and MC
- * The reason is now under investigation.

- Example of the systematic error of the energy resolution.
 - shower distance to the gaps
 - distance between the barycenter and the nearest inter-wafer gaps.
 - * We checked the effect of varying this distance : $4\sigma \rightarrow 3\sigma$, 3.5σ , 4.5σ
 - MIP threshold
 - binning

shower distance to the gaps (in standard deviations)				
	3σ	3.5σ	4σ	4.5σ
χ^2/ndf	5.51/3	6.31/3	8.40/3	8.67/3
stochastic term (%)	16.74±0.24	16.44±0.25	16.67±0.30	16.48±0.36
constant term (%)	2.04±0.17	2.09±0.17	1.75±0.24	1.79±0.30

- Example of the systematic error of the energy resolution.
 - shower distance to the gaps
 - MIP threshold
 - * In this study, the energy threshold for considering the hits is 0.5 MIPs
 - * We checked the effect of varying this threshold : 0.5 MIPs \rightarrow 0.7 MIPs, 0.9 MIPs

binning

MIP threshold			
	0.5 MIPs	0.7 MIPs	0.9 MIPs
χ^2/ndf	8.40/3	9.16/3	5.42/3
stochastic term (%)	16.67±0.30	16.52±0.32	16.53±0.29
constant term (%)	1.75±0.24	1.77±0.27	1.90±0.21

- Example of the systematic error of the energy resolution.
 - shower distance to the gaps
 - MIP threshold
 - binning
 - * In order to investigate the effect of the width of the bin, we changed it.

binning			
	double	half	
χ^2/ndf	8.46/3	5.61/3	
stochastic term (%)	16.33±0.30	16.66±0.28	
constant term (%)	1.88±0.22	1.81±0.23	

 We estimated the systematic error of the energy resolution by quadratic sum.

stochastic term
$$16.67 \pm 0.30(\text{stat.})^{+0.07}_{-0.44}(\text{syst.})\%$$

constant term
$$1.75 \pm 0.24 (\text{stat.})^{+0.39}_{-0.00} (\text{syst.})\%$$

- * We didn't take a momentum spread into account in this estimation.
 - We need to add the effect of a beam momentum spread.

Summary

- We re-reconstructed the data with a new calibration constants
 - energy linearity
 the deviations from linear function is less than 0.5 %
 - energy resolution
 energy resolution changes little bit
- We performed a MC simulation
 - There was large difference between data and MC
 - The reason is now under investigation
- We estimated the systematic error of the energy resolution.

stochastic term
$$16.67 \pm 0.30 (\text{stat.})^{+0.07}_{-0.44} (\text{syst.})\%$$

constant term
$$1.75 \pm 0.24 (stat.)^{+0.39}_{-0.00} (syst.)\%$$

back up

Physics Prototype Design

Prototype Design

* The physics prototype consists of thirty sensitive layers and absorber layers.

- sensitive layer : silicon

- 6×6 pixels for one module
- 3×3 modules in a layer (18×18 cm²)
- → Total 9720 channels

- absorber layer : tungsten

- Structure 1.4 : 1-10 layer 1.4 mm (0.4X₀)
- Structure 2.8 : 11-20 layer 2.8 mm (0.8X₀)
- Structure 4.2 : 21-30 layer 4.2 mm (1.2X₀)
- \rightarrow Total 24X₀

Thickness:
525 µm
pixel size:
10 mm
guard ring
1 mm

Silicon sensor

Details of the passive area and offsets

- * There is an inactive area in an active layer due to 1 mm guard ring around the modules.
- * In order to reduce their overlapping, the two layers are offset by 2.5 mm in the x direction (no offset in the y direction)

Detector slab

Test Beam @FNAL in 2008

- * The CALICE ECAL prototype was tested at FNAL MTest area in 2008.
 - 4, 6, 8, 12 and 20 GeV positron beams

The analog HCAL was located behind the ECAL

→ hit number information is available

Beam momentum spread:

2.7±0.3% for 2-4 GeV

2.3±0.3% for 8-32 GeV

Hit energy is measured in MIP units.

The MIP calibration for each channel is performed using 32 GeV muons.

Event Selection

The total energy deposited on ECAL

$$E_{\text{raw}} = \sum_{i=0}^{9} E_i + 2\sum_{i=10}^{19} E_i + 3\sum_{i=20}^{29} E_i$$

Ei: total energy in *i*th layer

Event Selection

Event selection

1. set the energy window.

$$125 < \frac{E_{\text{raw}} \text{ (MIPs)}}{E_{\text{beam}} \text{ (GeV)}} < 375$$

2. reject pion contamination by using HCAL information.

$$E_{\rm HCAL} < 50 \; {\rm MIPs}$$

3. reject the event that the shower maximum layer is in the first five layers and the last five layers.

Gap Effect

- * Each silicon wafer has 1 mm guard ring which induces an inactive area.
 - * There are 2 mm inter wafer gaps.
 - They represents the dominant source of the non-uniformity.

shower barycenter

$$(\bar{x}, \bar{y}) = \left(\sum_{i} w E_{i} x_{i}, \sum_{i} w E_{i} y_{i}\right) / \sum_{i} w E_{i}$$

E_i: hit energy

 x_i , y_i : hit position

w: weight (1., 2., 3.)

Need to take the gap effect into account in analysis

Gap Correction

* The response around the inter wafer gaps was fitted with the Gaussian.

$$f(\bar{x}, \bar{y}) = \left[1 - a_{x,-} \exp\left\{-\frac{(\bar{x} - x_{-,gap})^2}{2\sigma_{x,-}}\right\}\right] \left[1 - a_{x,+} \exp\left\{-\frac{(\bar{x} - x_{+,gap})^2}{2\sigma_{x,+}}\right\}\right] \times \left[1 - a_{y,-} \exp\left\{-\frac{(\bar{y} - y_{-,gap})^2}{2\sigma_{y,-}}\right\}\right] \left[1 - a_{y,+} \exp\left\{-\frac{(\bar{y} - y_{+,gap})^2}{2\sigma_{y,+}}\right\}\right]$$

⊽ (mm)

* The value of the parameters $a_{x,\pm}$, $x_{gap,\pm}$, $\sigma_{x,\pm}$, $a_{y,\pm}$, $y_{gap,\pm}$ and $\sigma_{y,\pm}$ was extracted from the results of the fits.

The results of the gaussian fit

	position (mm)	σ (mm)	a
$x_{-,gap}$	-25.5	4.77	0.15
$x_{+,gap}$	36.2	5.92	0.13
$y_{-,gap}$	-31.1	4.94	0.25
$y_{+,gap}$	30.8	3.80	0.18

Gap Correction

The energy loss in the inter wafer gaps can be corrected by applying $1/f(\bar{x}, \bar{y})$ correction factor.

The shape of the energy distribution becomes more symmetric after gap correction.

Performance (Linearity)

 We evaluated the performance of linearity and energy resolution after gap correction.

The deviations from linear function are less than 1 %

Performance (Energy resolution)

- We classified the energy resolution into four situations
 - 1. "no correction": the gap correction was not applied for all positron candidates
 - 2. "gap correction": the gap correction was applied for all positron candidates
 - 3. "center region w/ gap": only positron candidates with the shower barycenter in the central region which includes gaps around the central Si pad are selected.
 - 4. "center region w/o gap": it selects the events in the center region without gap. There is no (little) influence on gap effect

Performance (Energy resolution)

We checked the energy resolution in four situations.

Resolution curve:

$$\frac{\sigma_E}{E} = \frac{\sigma_{\rm stoc}(\%)}{\sqrt{E}} \oplus \sigma_{\rm const}(\%)$$

The energy resolution of the CERN data was evaluated using center region w/o gap.

Compared with CERN data, the stochastic term is consistent.

	stochastic	constant
no correction	20.47±0.21%	2.44±0.17%
gap correction	19.33±0.12%	1.33±0.16%
center region w/ gap	18.30±0.16%	1.57±0.15%
center region w/o gap	16.51±0.35%	1.90±0.15%
2006 CERN data	16.53±0.14±0.4%	1.07±0.07±0.1%

Linearity (CERN 2006)

Energy resolution (CERN 2006)

$$\frac{\sigma(E_{\text{meas}})}{E_{\text{meas}}} = \left(\frac{16.53 \pm 0.14(\text{stat}) \pm 0.4(\text{syst})}{\sqrt{E(\text{GeV})}} \oplus (1.07 \pm 0.07(\text{stat}) \pm 0.1(\text{syst}))\right)\%$$