scintillator ECAL progress &status

Tohru Takeshita (Shinshu) March2014 @ ANL calice

- ☆ sensors
- scintillator strip (shape,material,wrapping) MPPC ☆ combined experience at DESY ☆ outlook and plan

東京大

scintillator layer design

- current design
- MPPCs are standing perpendicular to the FE PCB
- SMD is difficult to be soldered
- non-uniformity
- in front of MPP

absorber

absorbe

scintillator design

absorber

absorber

new design

 MPPCs are soldered on the FE PCB as SMDs

shape effect understudy

scintillator design

absorber

absorber

new design

- MPPCs are soldered on the FE PCB as SMDs
- shape effect understudy

scintillation light simulation

- 2x45x5 mm³
 strip
- simulation ~
 experiment
- except light yield
- size of MPPC

wedge shape strip

sensitive area

).5mm

wedge length:3,5,7mm

- more simulation on
- wedge length 3,5,7mm
- good uniformity & yield

scintillator material

- Kuraray: SCSN-38
- ELJEN: EJ-204
- others are all the same PPD=MPPC1600pix/mm2 reflector film KIMOTO
- photon yield
- slight difference but not much

10 15 20 25

30

reflector film

- we need air gap between the reflector
- better homogeneity
- KIMOTO:Ref-White 14p.e.
- 3M: radiant mirror 19p.e.
- 3M is better

photo-sensor

10um

10um pitch with MR=10kpix /mm2

10k pix MPPC

- response curve at high intensity
- with/wo scintillator strip

8000

6000

4000

2000

Incident Photon Intensity [photoelectrons on MPPC]

Clock Generator

Honda

embedded layer

- scintillator + FE R/O electronics
- EBU : 4 SPIROCs 144 strips/layers

tested
 at
 DESY
 2012/
 2013

embedded layer

- scintillator + FE R/O electronics
- EBU : 4 SPIROCs 144 st

 tested at DESY 2012/ 2013

SPIROC2b

TDC of spiroc

- two TDC ramps
- resolution
 1.6~1.8ns/ch
- bunch end without
 beam trigger
 counter validation

ADC count

[•] Ogawa

MIP calibration

- MIP in the test beam DESY
- 2&5 dead ch. (1.4&3.5%)
- 9 noisy ch. in B-layer

MIP calibration

- photo-electrons / MIP
- mean: 6.2 & 7.2 p.e./MIP
- ~20% of sigma
- no apparent difference in spiroc chips

strip uniformity

- using electron beam at DESY
- simple SSA scheme

5mmx5mm resolution

shower profile using electron beam with tungsten plates

- simple SSA scheme
- 5mmx5mm resolution Forward layer & Backward layer Plot

SSA on 2 layers Plot

SSA on 2 layers Plot

tungsten

forward backward forward backward forward

144ch

Ogawa

shower profile using electron beam with tungsten plates

- simple SSA scheme
- 5mmx5mm resolution Forward layer & Backward layer Plot

SSA on 2 layers Plot

SSA on 2 layers Plot

18

tungsten

Ogawa

shower profile using electron beam with tungsten plates

synchro. with AHCAL

- using electron beam
- HCAL:30mmx30mm tile
- ECAL: 5mm x 5mm pseud-cell

144ch

summary & outlook

- scintillator ECAL
- parts (scintillator strip shape, material , reflector) are under optimization
- integration into a layer with FE ASIC (SPIROC) on going
- another beam test in preparation with AHCAL

reflector film

mass-fabrication

