Simulation Study for the Hybrid ECAL

CALICE collaboration meeting @Argonne 19th-21st March, 2014 Hiraku Ueno (Kyushu University)

Motivation

Silicon pads (Si ECAL)

- ✤ 5mm x 5mm cells
- sood performance for PFA
- main driver of detector cost

Scintillator strips +MPPC (Sc ECAL)

1.0mm

- * 45mm x 5mm orthogonal & SSA
 --> 5mm x 5mm spatial resolution
- * reasonable cost
- * ghost hits

An option to make the ECAL at a lower cost while keeping performance as much as possible would be mixture of silicon and scintillator-strip layers.

Topics for Hybrid ECAL Study

- Active Layer
 - ✓ Si for inner layers
 - ✓ Alternating
- Absorber Layer
 - ✓ uniform
 - ✓ 1:2 stacks
- Reduced Number of Layers
- Cheating PFA
 - ✓ with tile scintillator
 - ✓ with SSA
- Reduced Inner Radius
- More Realistic Simulation
- Cost Estimation

Reevaluated with ilcsoft v01-16-02

Hybrid ECAL Evaluation

- software version : ilcsoft v01-16-02
 - Pandora processors ... trunk version (in October 2013)
- $e^+e^- \to q\bar{q}$ (q=u,d,s, \sqrt{s} =91, 200, 360, 500GeV)
- only barrel region (cos(thrust angle)<0.7) for evaluation.

Topics for Hybrid ECAL Study

- Active Layer
 - ✓ Si for inner layers
 - ✓ Alternating
- Absorber Layer
 - ✓ uniform
 - ✓ 1:2 stacks
- Reduced Number of Layers
- Cheating PFA
 - ✓ with tile scintillator
 - ✓ with SSA
- Reduced Inner Radius
- More Realistic Simulation
- Cost Estimation

Reevaluated with ilcsoft v01-16-02

Jet Energy Resolution

•

- Jet Energy ↑
 - ScECAL > Hybrid[Si16+Sc14] = SiECAL
- Lower Energy
 - same JER
- Higher Energy
 - JER doesn't degrade up to 0.5

Jet Energy Resolution

Energy Dependence

• ScECAL > Hybrid[Si16+Sc14] > SiECAL

Ratio Dependence

- Lower energy ... ScECAL looks slightly better
- Higher energy ... SiECAL is better
 - JER degrades almost linearly

alternating hybrid

 $\boldsymbol{\cdot}$ same number of active layers and absorber configuration

- Sc=1.0mm, Si=0.5mm
- absorber layers : 2.1mm x20/ 4.2mm x9

Jet Energy Resolution (alternating)

RMS90(E_j) / Mean(E_j) [%]

	45GeV	100GeV	180GeV	250GeV
SiECAL	3.70	2.86	2.88	2.96
Hybrid Si16+Sc14]	3.66	2.90	2.90	3.00
Double	3.69	2.92	2.91	3.02
Single	3.73	2.90	2.87	3.00
ScECAL	3.70	2.97	3.05	3.18

Performances of the three hybrids are same

Absorber Thickness Study

- two cases
 - same thickness for all layers
 - 1:2 stacks
- Standard PFA (w/o stand alone photon clustering)
- Active Layer ... single alternating

uniform

W thickness [mm]	Radiation Length(X ₀)
1.4	11.6
2.1	17.4
2.8	23.2
3.5	29.0
4.2	34.8

1:2 stacks

W thickness (in20, out9)[mm]	Radiation Length(X ₀)
1.0/2.0	10.9
I.4/2.8	15.2
2.1/4.2	22.8
2.8/5.6	30.4
3.5/7.0	38.0

Jet Energy Resolution (absorber)

Jet Energy Resolution (absorber)

caused by larger leakage into HCAL

Jet Energy Resolution (absorber)

need to study around 23X₀

Reduced Number of Layers

- •5 configurations (10, 16, 20, 26, 30 layers)
- •Hybrid[Si16Sc14], single alternating
- keep total absorber thickness

Layer thickness (mm)

2.1

4.2

2.4

4.8

3.15

6.3

4.0

8.0

6.65

13.30

W layers

20

9

17

8

13

6

10

5

6

3

ECAL model

30 layers

26 layers

20 layers

16 layers

10 layers

ITUNY I NEU INA		LL	_K
-----------------	--	----	----

Reduced Number of Layers

Hybrid [Si16+Sc14]

Single Alternating

- large difference between 26 layers and 20 layers
- $10 \sim 20$ layers \rightarrow worse than SiECAL
- will study the case we keep 2.1mm for inner layers
- JERs are almost same between Hybrid[Si16+Sc14] and single alternating

Cheating PFA

To compare the performance between configurations,

Switch standard PFA by clustering using MC information

Cheating PFA

Standard PFA w/ strip-Sc(45x5)
Standard PFA w/ tile-Sc(5x5)
Standard PFA + photon clustering
Cheat photon clustering
Cheat photon, n, KOL clustering
Perfect PFA

- strip \Leftrightarrow tile difference is small
- stand alone photon clustering improves JER especially in higher energy.

- perfect pattern recognition \rightarrow same tendency as single photon
- difference \rightarrow confusion term

- Active layers
 - same absorber thickness ... not degrade up to 50% of Sc-layers
 - same module thickness ... degrade almost linearly
 - alternating structure ... same as Hybrid[Si16+Sc14]
- Absorber layers
 - around $23X_0$ seems good \rightarrow will investigate more minutely
- Reduced number of layers
 - 26 layers seems good option
 - will investigate the case to keep 2.1mm for inner layers
- Cheating PFA
 - JER difference comes from performance of pattern recognition
- Reduced ECAL Inner Radius
- More Realistic Simulation
- Cost Estimation

• Active layers

- same absorber thickness ... not degrade up to 50% of Sc-layers
- same module thickness ... degrade almost linearly
- alternating structure ... same as Hybrid[Si16+Sc14]
- Absorber layers

Cost Estimation

- Active layers
 - same absorber thickness ... not degrade up to 50% of Sc-layers
 - same module thickness ... degrade almost linearly
 - alternating structure ... same as Hybrid[Si16+Sc14]

• Absorber layers

• around $23X_0$ seems good \rightarrow will investigate more minutely

- Active layers
 - same absorber thickness ... not degr
 - same module thickness ... degrade a
 - alternating structure ... same as Hyb
- Absorber layers
 - around $23X_0$ seems good \rightarrow will inve
- Reduced number of layers
 - 26 layers seems good option

- Cheating PFA
 - JER difference comes from performance of pattern recognition
- Reduced ECAL Inner Radius
- More Realistic Simulation
- Cost Estimation

Standard PFA 50% of Sc-layers

learly

Sc14]

nore minutely

Confusion Term

- Active layers
 - same absorber th[®]
 - AMS90(E) / Mean(E • same module thi
 - alternating struc
- Absorber layers
 - around 23X₀ see
- Reduced number of la
 - 26 layers seems
 - will investigate the case to keep nner layers

50

SIECAL

ScFCAL

Hybrid[Si16+Sc14]

Confusion term of SiECAL

Confusion term ScECAL

Confusion term Hybrid[Si16+Sc14]

100 150 200 250 300

Energy of One Jet [GeV]

- Cheating PFA
 - JER difference comes from performance of pattern recognition
- Reduced ECAL Inner Radius
- More Realistic Simulation
- Cost Estimation

ECAL Calibration

- Calibration constants should be determined for silicon layers and scintillator layers respectively.
 - calibrated using 10GeV photon.
- use 10GeV muon for MIP calibration.

Improvements for ScECAL

Birk's Law MIP threshold after SSA

include Birk's Law

MIP threshold : 0.5 \rightarrow 0.3 / a virtual cell

Energy resolution to single photon

Thicker absorber layers makes single particle resolution worse.

EM Shower Leakage into HCAL

Deposited energy of EM shower in HCAL increases as absorber thickness decrease.

Scintillator Thickness Dependence

Photon Energy Resolution

ECAL Performance (photon 1~50GeV)

ScThick	σ stat	$\sigma_{ m const}$
0.5mm	19.04%	2.19%
1.0mm	16.84%	1.71%
2.0mm	15.17%	1.72%
3.0mm	14.26%	1.56%

ilcsoft v01-15