

W-DHCAL Digitization

T. Frisson, C. Grefe (CERN)

CALICE Collaboration Meeting at Argonne

Active element: Thin Resistive Plate Chambers (RPC)

- Glass as resistive plates (~1 mm)
- single 1.15 mm thick gas gap
- 1x1 cm² pads
- digital readout:
 - 1 bit discriminator per pad/channel Timestamp (100 ns time resolution)

<u>1 layer:</u>

- 3 RPCs (32 x 96 cm²)
 - \Rightarrow 96x96 pads = 9216 pads

DHCAL: 54 layers

- main stack: 39 layers with tungsten absorber
 - 10 mm thick W plate
- tail catcher:
 - 8 layers with steel absorber (25.4 mm thick)
 - 7 layers with steel absorber (100 mm thick)

 \Rightarrow ~500'000 channels

Simulation

- RPC cassette contents, layout, and sensitive detector description from steel DHCAL simulation
- Octogonal tungsten absorbers + support from **W-AHCAL simulation**
- Beam instrumentation (scintillators, Cerenkov counters, and Wire Chambers) from **W-AHCAL simulation**
- Only the main stack is included in the simulation
 → only 39 layers in the next slides
- Beam profile
- \rightarrow 5 cm width Gaussian \rightarrow 30 mrad angular spread
- Secondary particle production cut $\,\rightarrow\,5\,\mu m$

Digitization

Re-implementation of RPCSim as a Marlin Processor

- Intro : RPCSim
- Strategy for tuning RPCSim
- Event Selection
- Results

- Collect all energy deposits from Mokka
 - \rightarrow avalanche starting points

- Charge generation parametrized from data taken with analog RPC

- $\rightarrow\,$ The charge is randomly generated from distribution
- → Shift applied to charge distribution to accommodate possible differences in the operating point of RPCs $Q_0 (Q_0 = Q Q_0)$
- \rightarrow Correct in average:
 - Do not take into account the distance of the ionization from anode
 - Ignore higher ionization probabilities of non-MIP particles

- Local inefficiencies

- \rightarrow avalanche depletes electric field and prevents secondary avalanches within a small radius
- \rightarrow apply a distance cut **d**_{cut} :
 - One point of a pair of points randomly discarded if closer than d

- Charge distributed in the XY plane :
 - \rightarrow Several spread models

$$f(\rho) = (1 - \mathbf{r}) \cdot e^{-\frac{\rho}{S_1}} + \mathbf{r} \cdot e^{-\frac{\rho}{S_2}}$$

$$f(\rho) = (1 - \mathbf{r}) \cdot e^{-\left(\frac{\rho}{\sigma_1}\right)^2} + \mathbf{r} \cdot e^{-\left(\frac{\rho}{\sigma_2}\right)^2}$$

- \rightarrow Need to determine charge integral for each individual pad (MC method)
 - Pre-calculated look up table
 - Take into account symmetry
- \rightarrow Tune spread model parameters with MIPs :
 - $-S_1$: Slope of the exponential decrease of charge induced in the readout plane
 - S_2 : Slope of 2nd exponential, to improve the description of the tail
 - r : Relative contribution of the 2 exponentials
- Apply trigger threshold

Strategy for tuning RPCSim

- 1) Select 'pure' MIPs (muons without secondary EM showers)
 - Tune spread and trigger threshold parameters
 - → Minimization using 'Nhits per layer' distribution
 - \rightarrow 10'000 events per parameter set (~30 min)
 - \rightarrow Huge parameter space

- 2) Select all muons
 - Tune d_{cut} and Q_0 parameters \rightarrow plan: Q_0 in the previous step, e- for d_{cut}
- 3) Check with electron and pions data

To do : Tune parameters in clean regions (see Christian's talk)

Event selection

Preselection :

- → Filter box events, dead RPC modules, noisy/dead channels/ASICs
- \rightarrow Remove duplicate hits (same position, different timestamps)

Reconstruction

- \rightarrow Remove out-of-time hits: only keep events in a 300 ns window
- → Nearest neighbor clustering of adjacent cells
- \rightarrow Hough transform based track reconstruction

(not the most efficient in this case but useful for forthcoming studies)

Final selection

- \rightarrow Ntracks = 1
- \rightarrow Ncluster > 15
- \rightarrow pure MIP muons : remove events with 2 consecutive layers with Nhits > 9

To do : Slope less than 3 degrees

Parenthesis about Hough transform

300 GeV pions

- Black = clusters not linked to a track
- 1 color per track

Track of the pion before hadronic interaction

Digitizer tuning with muons

Run 660356 – 180 GeV μ

- **To do:** needs further improvements
 - compare parameter values with Steel-DHCAL digitization

CALICE Meeting - Argonne

First look at pions

Preselection:

- → Filter box events, dead RPC modules, noisy/dead channels/ASICs
- \rightarrow Remove duplicate hits (same position, different timestamps)

Reconstruction

- \rightarrow Remove out-of-time hits: only keep events in a 300 ns window
- \rightarrow Nearest neighbor clustering of adjacent cells

Final selection

- \rightarrow interaction layer < 15
- \rightarrow nHits > 20
- \rightarrow hit density > 3
- \rightarrow at least 20 layers with hits

Run 660259 – 80 GeV π

Re-implementation of RPCSim as Marlin processor

Digitizer parameters are tuned with muons

- \rightarrow ongoing work
- \rightarrow prediction for electrons and pions
- \rightarrow First results look promising

Finalize Mokka model including beam line instrumentation

- \rightarrow Need to include local effects in simulation / digitization
 - effects of fishing lines and borders (already implemented in Mokka)
 - local efficiencies are crucial for data-Monte Carlo comparison

Back up

Test beam setup (2012)

PS (2 weeks)

- 1 10 GeV/c
- electrons, pions, protons
- RPC rate capability OK
- Data taking with ~500 triggers/spill
- SPS (4 weeks)
 - 10 300 GeV/c
 - electrons, pions
 - RPC rate capability problem \rightarrow running with limited rate: 250 500 triggers/spill
 - ~ 30 million events recorded

Data quality

H. Holmestad (CERN, University of Oslo)

Box events:

- box shaped pattern in individual layers
- hits created along boundary of front end board

Noisy and dead ASICs:

All hits in detector layer 22/54 for run 6600488 (270 GeV and 14370 events)

Dead RPC modules:

All hits in detector layer 26/54 for run 6600488 (270 GeV and 14370 events)

Noisy and dead cells:

All hits in detector layer 22/54 for run 6600488 (270 GeV and 14370 events)

 \Rightarrow Taken away from the data

CALICE Meeting - Argonne

Remove duplicate hits (same position, different timestamps)

Remove out-of-time hits: only keep events in a 300 ns window

Nearest neighbor clustering of adjacent cells