Status of W-DHCAL Calibration

Christian Grefe (CERN)

on behalf of the CERN PH-LCD group

21. March 2014

Outline

1 Introduction

- 2 Efficiency and Multiplicity
- 3 Calibration

2

W-DHCAL setup Goal of Calibration

Data Taking at CERN (2012)

- 54 RPC layers:
 39 with tungsten absorber (main stack),
 15 with steel absorber (tail catcher)
- Each layer instrumented with 96 \times 96 $1\times1\,{\rm cm^2}$ pads \Rightarrow \sim 500000 channels
- PS (1-10 GeV): 1 run period of 2 weeks
- SPS (10-300 GeV): 2 + 1 + 1 weeks
- Dedicated µ and high rate runs
- In total \sim 30 million events recorded

W-DHCAL setup Goal of Calibration

Data Taking at CERN (2012)

- 39 layers W-DHCAL + 15 layers Fe-DHCAL
- $10\times 10\,{\rm cm^2}$ scintillator triggers (30 \times 30 ${\rm cm^2}$ for dedicated muon runs)
- Three wire chambers \Rightarrow beam profile
- Two Cerenkov counters \Rightarrow particle identification

W-DHCAL setup Goal of Calibration

Goal of Calibration

• DHCAL only measures number of hits

 \Rightarrow control efficiency (ϵ) and multiplicity (μ)

- Depends on temperature, pressure, voltage, ...
- Remove layer-to-layer and run-to-run fluctuations
- Determine nominal efficiency (ϵ_0) and multiplicity (μ_0) for digitization tuning

Determination of Efficiency and Multiplicity

- Lose pre-selection for muon events based on number of active layers (> 30) and total number of hits (< 150)
- $\bullet\,$ For each layer finds mip stub candidate in neighboring layers (±3 layers, min 4 valid clusters)
- Only use clusters with 3 or less hits for mip stub candidates (no cut on layer of interest)
- $\bullet\,$ Straight line fit to identify intersection with layer of interest, χ^2 cut to validate mip stub
- Determine if nearby cluster exists in layer of interest
- Efficiency: fraction of events with cluster found
- Multiplicity: mean cluster size for events with cluster found

Determination of Efficiency and Multiplicity Efficiency and Multiplicity in Muon Runs

Layout of one DHCAL Layer

Determination of Efficiency and Multiplicity Efficiency and Multiplicity in Muon Runs

- $\bullet\,$ Combine 18 muon runs taken with 30 $\times\,$ 30 cm^2 triggers at 9 positions
- More than 500k events at each position allow to extract local efficiencies and multiplicities for each pad
- Beam runs only allow to extract efficiency and multiplicity for central region $(10 \times 10 \text{ cm}^2 \text{ trigger with narrow beam spot})$
- Average: $\epsilon_0 = 87.1\%$, $\mu_0 = 1.55$ (Raw calibration)

Determination of Efficiency and Multiplicity Efficiency and Multiplicity in Muon Runs

- Remove module boundaries and fishing lines to determine nominal values in clean regions
- Effect of fishing lines included in GEANT4 through material
- Module boundaries effect added in digitization by lowering effective charge depending on position
- Average: $\epsilon_0 = 94.6\%$, $\mu_0 = 1.61$ (Cleaned calibration)

Determination of Efficiency and Multiplicity Efficiency and Multiplicity in Muon Runs

 $\bullet\,$ Drop of efficiency in the centre of each module \Rightarrow not visible in Fe-DHCAL

• Multiplicity not affected in a similar fashion

10

Determination of Efficiency and Multiplicity Efficiency and Multiplicity in Muon Runs

Warping of Frontend Boards

Dime for size reference

• Front end boards warped over time leading to larger gaps at the edges

Determination of Efficiency and Multiplicity Efficiency and Multiplicity in Muon Runs

- Remove frontend board boundaries for final values
- Average: $\epsilon_0 = 95.3\%$, $\mu_0 = 1.61$ (Final calibration)

Procedure Response

Calibration Procedure

• Correct each hit for its local efficiency and multiplicity to nominal values:

$$\mathbf{W}^{\text{calibrated}} = \sum_{i}^{N} \frac{\mu_0 \ \epsilon_0}{\mu_i \ \epsilon_i}$$

• μ_i and ϵ_i are determined for each module if possible (more than 100 entries) \Rightarrow works well only for central module

Procedure Response

Correlation between Calibrations

Procedure Response

Time Dependence of Efficiency Drop

Procedure Response

Response at 40 GeV

Muons

Pions

Runs taken at same beam momentum and significantly different conditions
 allows to check calibration

Procedure Response

Response at 40 GeV - Calibrated

Muons

Pions

• Calibration improves the agreement but still slightly different response

Procedure Response

Response at 40 GeV - Calibrated (with centre) Muons Pions

- Including the central region in the calibration gives best results
- $\bullet\,$ Most hits end up in the region with reduced efficiency
 - \Rightarrow important to describe this well

Procedure Response

Longitudinal Shower Profiles (40 GeV)

Calibration excluding centre

Calibration including centre

Procedure Response

Calibrated Muon Response

Procedure Response

Calibrated Electron Response

Procedure Response

Calibrated Pion Response

Procedure Response

Linearity (Very Preliminary)

• Parametrize using $N = \alpha E^{\beta}$

Procedure Response

Resolution (Very Preliminary)

Summary and Outlook

- It is crucial to have data and MC on the same level
- Option 1:
 - Include efficiency drop in digitization
 - Will likely only be an average description
 - Will require good description of beam profile
 - Data from different runs will not be normalized
- Option 2:
 - Apply local calibration (depending on z) where possible
 - Digitization can stay as it is (flat efficiency) using the nominal calibration constants in the clean region
 - Data from different runs will be normalized

