Minimum bias $\rm ZH,\,Z \rightarrow q\bar{q}$ @ 250 GeV

Y. Haddad haddad@llr.in2p3.fr

LLR, École polytechnique, IN2P3-CNRS

April 30, 2014

Introduction
 Analysis Strategy
 Analysis
 Conclusion

Motivation

- ZH is the dominant Higgs prodcution process @ $250~{\rm GeV}$
- Signal: $e^+e^- \rightarrow Z^* \rightarrow ZH \rightarrow 2j + X$

- $M_H^2 = M_{jj}^{recoil} = (\sqrt{s} E_Z)^2 P_Z^2$ $\Rightarrow g_{ZZH} \propto \sigma = N/(L \cdot \epsilon)$
- Reconstruct the M^{recoil} from the Z dijet only, without measuring the Higgs products.
 - Increase the Higgs statistics \rightarrow 70% Z BR ($\sim6\%$ for (II)recoil)
 - Almost model independent.
- Very difficult @250 GeV (ZZ/WW background)

MC Samples

- Main processes at $250~GeV\colon ZH,~W^+W^-,~Z^0Z^0,~Z\to q\bar{q}$
- For qq(Recoil) analysis \rightarrow the main background : $WW \rightarrow 2j + X, ZZ \rightarrow 2j + X$
- 2012 DBD MC Generator samples (WHIZARD-v1.95 Generator)

	$N_{jet} \ge 2$	Nevents	$\sigma [fb]$	weight
	5			$(L = 500 f b^{-1})$
	ZH(qq+X)	346.013	437368	0.395563
	WW(qqqq)	14874.3	1074111	6.92401
- +	$WW(qql\nu)$	18781	1753663	5.35479
$e_L e_R$	ZZ(qqqq)	1402.06	1004632	0.697798
	ZZ(qqll)	1422.14	1299591	0.547149
	Z(qq)	129149	1629438	39.6299
	ZH(qq+X)	221.952	267357	0.415085
$e_R^- e_L^+$	WW(qqqq)	136.357	136325	0.500117
	$WW(qql\nu)$	172.733	158021	0.546551
	ZZ(qqqq)	604.971	603931	0.500861
	ZZ(qqll)	713.526	637256	0.559843
	Z(qq)	71272.8	1676503	21.2564

- Event weighting calculated for a processus "i" by $w_i = L \cdot \sigma_i / N_i$

Fast Simulation & Jet Clustering

- Reconstruct only the stable MCParticle in generator level
- Jet clustering :
 - Durham algorithm implemented in FastJet-v3.04. $y_{ij} = \frac{2\min\{E_i^2, E_j^2\}}{Q} (1 - \cos\theta_{ij})$
 - Exclusive jet clustering with fixed- y_{cut}
- Smearing of the jet
 - Energy : $\sigma(E_i)/E_i = \alpha$

•
$$\Rightarrow$$
 Momentum : $\sigma(p_j) = \left(\frac{E_j}{P_j}\right)\sigma(E_j) = \left(\frac{E_j^2}{P_j}\right)\alpha$

- A $\alpha = 3\%$ is chosen for this analysis
- For $ZH \rightarrow q\bar{q} + Z$: Jet Fraction vs y_{cut}
- Z boson di-jet → the jet pair minimizing $D = |m_{ij} - m_Z|$
- The number of Jet in final stat $n_{jet} = n_{q\bar{q}} + n_X$
- The $n_{a\bar{a}} \sim 2 \ (> 2 \rightarrow \text{Gluon radiation})$
- $n_X \sim [0,4]$ depends on how the Higgs decays

Jet Clustering Optimization

- The Selected di-jet mass is fitted by a Voigtian p.d.f (Breit-Wigner⊗Gauss)
 - The $\chi 2$ vs $y_{cut} \rightarrow \min$ at $y_{cut} = 0.006$
 - The $\widetilde{\Gamma}$ vs $y_{cut} \rightarrow$ min at $y_{cut} = 0.002$
- The $y_{cut} = 0.006$ is chosen for the further analysis.
- Next step :
 - Measurement of the MC-Matching efficiency of the Z
 - The best y_{cut} table for each Higgs decay as

Preselection

- ZZ/WW Background rejection method (a la Thomson):
 - ZZ lead in 4-Jet final state (all-hadronic decays) or 2jet + 2l
 - Force jet-clustering into 4-Jet and select the best two pairs loseset to Z mass
 - ZZ lead in 4-Jet in the final state (all-hadronic decays) or 2jet + 1l = 3 jet
 - Force jet-clustering into 4-Jet and select the best two pairs closest to W mass
 - Force jet-clustering into 3-Jet select the best par clostest to W best
 - A rejection box is applied to remove to ZZ/WW contribution
 - The forced jet clustering is used only for the background rejection: The di-jet with fixed y_{cut} is used for the measurement.

Analysis 0●0000000

Preselection

• First selection (preselection) on the forced-jet variables

- for $WW \rightarrow q\bar{q}q\bar{q}$ reject event with : (90 > m12 > 70 GeV) and (90 > m₃₄ > 70 GeV)
- for $ZZ \rightarrow q\bar{q} + (q\bar{q}|l^{-}l^{+})$ reject event with : (100 > m12 > 80 GeV) and (100 > m34 > 80 GeV)
- Very loose cut on the recoil mass : $200 > m_{rec} > 50~{
 m GeV}$

	Process	N _{tot}	Npres	ε_{pres}
$e_L^- e_R^+$	$Z \rightarrow qq$	1.62944e+06	681176	0.418044
	$WW \rightarrow qqqq$	1.07411e+06	309080	0.287754
	$WW \rightarrow qql\nu$	1.75366e+06	1.43914e+06	0.82065
	$ZZ \rightarrow qq\bar{q}q$	1.00463e+06	393609	0.391794
	$ZZ \rightarrow qqll$	1.29959e+06	925202	0.711918
	$ZH \rightarrow qqH$	437368	325021	0.743129
$e_R^- e_L^+$	$Z \rightarrow qq$	1.6765e+06	763544	0.455438
	$WW \rightarrow qqqq$	136325	34991	0.256673
	$WW \rightarrow qql\nu$	158021	128520	0.81331
	$ZZ \rightarrow qq\bar{q}q$	603931	238576	0.395039
	$ZZ \rightarrow qqll$	637256	434858	0.682391
	$ZH \rightarrow qqH$	267357	199170	0.744959

- Use of ROOT TMVA package \rightarrow Boosted Decision Tree (BDT)
- The input variables are;
 - m_{jj}: The invariant mass of the di-jet system
 - cosθ_Z: Production angle of the di-jet system
 - cosθ₁₂: Angle between two selected jets
 - Thrust
 - $y_{23}, y_{34} (y_{ab} = \min\{y_{cut} | a \ jets \leftarrow b \ jets\})$

•
$$H_{miss} = \sum_{i \in Event} \parallel \vec{p_i} \parallel$$

- Train the BDT for combined backgrounds
- One BDT of each polarization $(e_R^- e_L^+ \text{ or } e_L^- e_R^+)$
 - The Gradient BDT (BDTG) is chosen, more powerful than the standard BDT.

MVA based selection

Analysis 0000●0000

Conclusior

MVA based selection

Analysis Strategy	Analysis
	00000000

MVA results

- Signal and background efficiency are calculated ($\varepsilon_i = N_i/N_{tot}$).
- The significance defined as $S/\sqrt{S+B}$ shows a maximum at
- for $e_L^-.e_R^+$

	Analysis Strategy	Analysis	Conclusion
C	000	000000000	

MVA results

- Signal and background efficiency are calculated ($\varepsilon_i = N_i/N_{tot}$).
- The significance defined as $S/\sqrt{S+B}$ shows a maximum at
- for $e_R^-.e_L^+$

• Optimal cut at $BDT_{output} > 0.7$ for both polarizations

MVA results

- Signal and background efficiency are calculated ($\varepsilon_i = N_i/N_{tot}$).
- The significance defined as $S/\sqrt{S+B}$ shows a maximum at
- for the recoil mass

MVA results for both polarizations

Process $\begin{pmatrix} e_L^- e_R^+ \end{pmatrix}$	σ [fb]	N_{tot}	Weight	$N_{BDT>0.7}$	$\varepsilon_{BDT} > 0.7$
$Z \rightarrow qq$	129149	681176	94.8	1831	0.00268
$WW \rightarrow qqqq$	14874.3	309080	24.1	15499	0.05014
$WW \rightarrow qql\nu$	18781	$1.44 \ 10^{6}$	6.5	1325	0.00092
$ZZ \rightarrow qqqq$	1402.06	393609	1.8	40261	0.10228
$ZZ \rightarrow qqll$	1422.14	925202	0.8	7290	0.00788
$ZH \rightarrow qqH$	346.013	325021	0.5	86463	0.26602

Process $(e_R^- e_L^+)$	σ [fb]	N_{tot}	Weight	$N_{BDT>0.7}$	$\varepsilon_{BDT>0.7}$
$Z \rightarrow qq$	71272.8	763544	46.7	2467	0.00323
$WW \rightarrow qqqq$	136.357	34991	1.9	3272	0.09350
$WW \rightarrow qql\nu$	172.733	128520	0.7	183	0.00142
$ZZ \rightarrow qqqq$	604.971	238576	1.8	33341	0.13975
$ZZ \rightarrow qqll$	713.526	434858	0.8	5368	0.01234
$ZH \rightarrow qqH$	221.952	199170	0.5	72288	0.36294

Conclusion & Outlook

- Clear Higgs peak with good significance in $e_R^-.e_L^+$ polarization.
- Still improvement are needed:
 - Include a realistic beam polarization.
 - Optimization of the selection \rightarrow investigation of more discriminant variables.
- Next :
 - Extraction of the cross section of ZH process
 - Measurement of the selection efficiency for each Higgs boson decay mode.
 - Full simulation undergoing.