### tth study @ $\sqrt{s}$ = 500 GeV

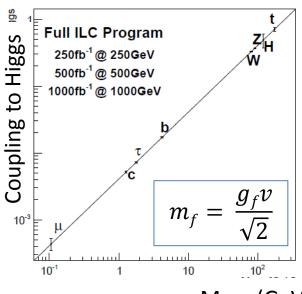
2014.04.30
ILD optimization meeting
Yuji Sudo
Kyushu University

#### Motivation

- Higgs boson has been discovered by LHC and the higgs mass is ~125 GeV.
- We can directory measure the top quark Yukawa coupling via tth channel.
- Previous tth analysis was performed assuming Mh = 120GeV.

(R. Yonamine et al., PHYSICAL REVIEW D 84, 014033(2011))

- We are working on tth study at  $\sqrt{s}$  = 500 GeV assuming Mh=125 GeV.
- Polarization :  $(Pe^{-},Pe^{+})=(-0.8,+0.3)$


Mh=120GeV→Mh=125GeV

production cross section (fb) 0.641 0.485

Branching ratio of  $h \rightarrow bb$ 

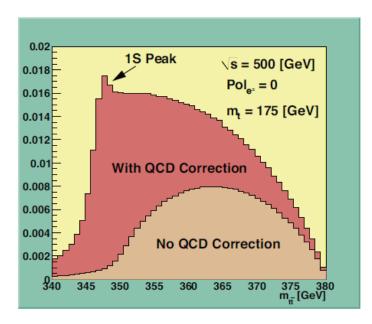
0.68

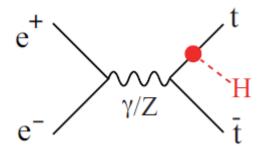
0.577



## Signal and Background

ttbar cross section is increased around ttbar threshold by ttbar bound-state effect


- tth cross section is enhanced
- ttZ cross section is also increased


#### Signals

tth→8jets (h→bb)
 tth→In+6jets (h→bb)

Main Backgrounds

ttZ, ttg(bb), tbw





#### expected # of events @ 1000fb<sup>-1</sup>

- $\sqrt{s}$  = 500 GeV, Mh = 125 GeV, (Pe<sup>-</sup>,Pe<sup>+</sup>)=(-0.8,+0.3)
- production cross section

|   |       |                  | . •   |
|---|-------|------------------|-------|
| • | Brand | rhing            | ratio |
|   | Dian  | ~! !!!! <b>%</b> | Idtio |

| Process                      | σ (fb) |
|------------------------------|--------|
| e⁻e⁺ → tth                   | 0.485  |
| $e^-e^+ \rightarrow ttZ$     | 1.974  |
| $e^-e^+ \rightarrow ttg(bb)$ | 1.058  |
| e⁻e⁺ → tbW                   | 979.8  |

| Decay mode         | Branching ratio |
|--------------------|-----------------|
| h→bb               | 0.577           |
| tt <b>→</b> bqqbqq | 0.457           |
| tt→blvbqq          | 0.438           |
| tt→blvblv          | 0.105           |

expected # of signals and Backgrounds(@1000fb<sup>-1</sup>)

| tth(tt6j, hbb)     | 127.9 | tth(ttln4j,hbb) | 122.6  |
|--------------------|-------|-----------------|--------|
| tth(ttall, hnobb)  | 205.2 | ttZ             | 1974   |
| tth(ttlvlv2j, hbb) | 29.3  | ttg(bb)         | 1058   |
|                    |       | tbW             | 979807 |

## tth >8jets(In+6jets) analysis

- tth cross section is proportional to the g<sub>t</sub><sup>2</sup>
- cut based event selection and counting

In this analysis, higgs decays into two b jets

- 4 b jets out of 8(6) jets
- No (one) isolated lepton
- large angle between higgs candidate b jets

#### **Event Selection**

- signal topology
- ✓ Y cut (6, 8 jet event)
- ✓ No(one Isolated Lepton
- ✓ B jet candidate  $\geq 4$
- detector acceptance | Jet  $\cos \theta$ |  $\leq 0.99$
- jet pairing
- $\checkmark \chi 2 \le 9.5 (19)$

- kinematics cut
- ✓ Leading 2 Jet Energy Sum
- ✓ Lowest 3 Jet Energy Sum (only 8jet mode)
- reconstructed mass cut
- √ top candidate Mjjj ≥ 140 GeV
- √ higgs candidate Mjj ≥ 80 GeV
- $\checkmark$  100 (90)GeV ≤ h candidate Mjj ≤ 160(150)GeV

# tth >> 8 jets channel

## Event Selection (tth >> 8 jets)

Jet clustering : Durham algorithm 
$$Y_{ij} = \frac{\min\{E_i^2, E_j^2\}(1-\cos\theta)}{E_{cm}^2}$$

forced 8 jet clustering Select events with large Y8 -> 7 as 8 jets category if Y8 $\rightarrow$ 7 is small, check Y7 $\rightarrow$ 6 value

$$\checkmark$$
 "Y8 $\rightarrow$ 7 > 0.0009" + "Y8 $\rightarrow$ 7<=0.0009 && Y7 $\rightarrow$ 6>0.0025"

Isolated Lepton

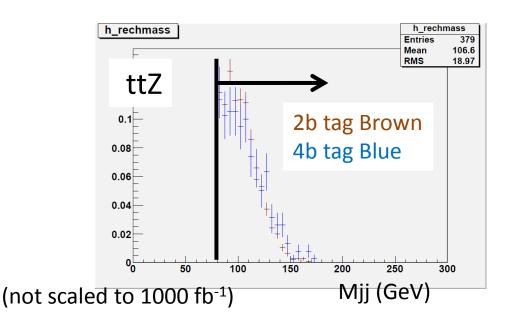
$$cosθcone = 0.98$$
 $Econe < \sqrt{6(Elep - 15)}$ 

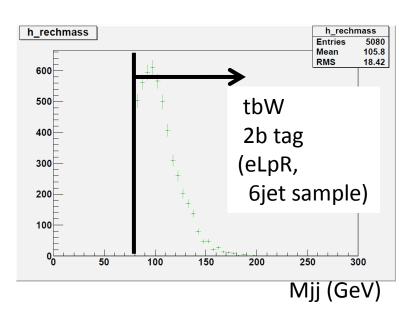
- ✓ require no Isolated lepton
- ✓ B jet candidate  $\geq$  4 (btag>=0.85, 0.8, 0.6, 0.2)
- reject events with forward jets
- $|\text{Jet cos}\theta| \leq 0.99$

## Jet pairing, χ2 Cut

- $\sqrt{s}$  = 500GeV is near by  $\chi^2$  = threshold of the tth production
  - P<sub>higgs</sub> should be small
  - Dijet angle becomes large
- → Angle information between higgs candidate jets is effective to choose correct jet pair.
- check all combinations and choose a pair with minimum  $\chi^2$  value

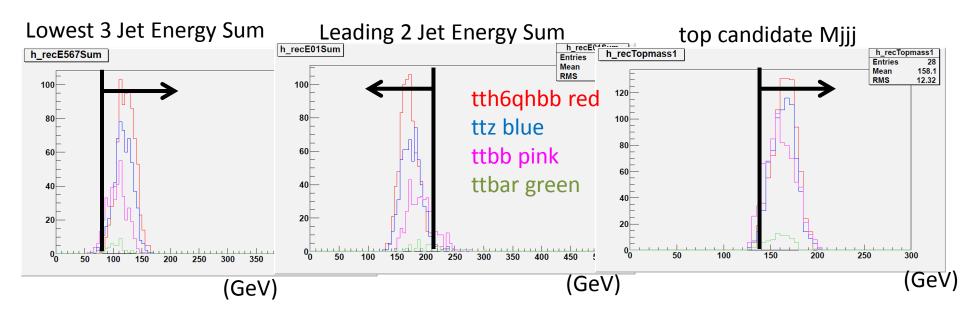
reject large  $\chi^2$  events


$$\checkmark \quad \chi^2 \leq 9.5$$


$$\chi^2 = \left(\frac{\Delta angle(j_1, j_2) - \Delta angle(higgs\ jj)}{\sigma_{\Delta angle(higgs\ jj)}}\right)^2 + \left(\frac{m_{j_3j_4j_5} - M_{top}}{\sigma_{M_{top}}}\right)^2 + \left(\frac{m_{j_4j_5} - M_W}{\sigma_{M_W}}\right)^2 + \left(\frac{m_{j_6j_7j_8} - M_{top}}{\sigma_{M_{top}}}\right)^2 + \left(\frac{m_{j_7j_8} - M_W}{\sigma_{M_W}}\right)^2$$
higgs

- require b tag  $\geq$  0.2 to j<sub>1</sub>, j<sub>2</sub>, j<sub>3</sub>, j<sub>6</sub>
- Mean value and RMS of angle and reconstructed Mass with jets matched MC infomation
- Mtop = 171.9 GeV
- sigma Mtop = 15.5 GeV
- MW = 80.385 GeV
- sigma MW = 9.8 GeV
- angle(jj) = 2.468
- sigma angle(jj) = 0.2858

#### Mjj shape of tbW event


- tbw event shape is difficult to estimate with 4 b tag category due to the small statistics of MC samples.
- compare ttz shape of 2 b tag category and 4 b tag category
- check Mjj shape of ttz events
  - $-2 \text{ b tag} + \text{Y8} \rightarrow 7 < 0.0008 \&\& \text{Y7} \rightarrow 6 < 0.0025$
  - 4 b tag + Y8 $\rightarrow$ 7 >0.0009 || Y7 $\rightarrow$ 6 > 0.0025
- In Mjj  $\geq$  80 GeV, the Mjj shape of 2 b tag category is similar to 4 b tag category. (KS probability = 0.03)
- ✓ We estimate Mjj shape of tbW events with 2 b tag category.
- √ higgs candidate Mjj ≥ 80 GeV





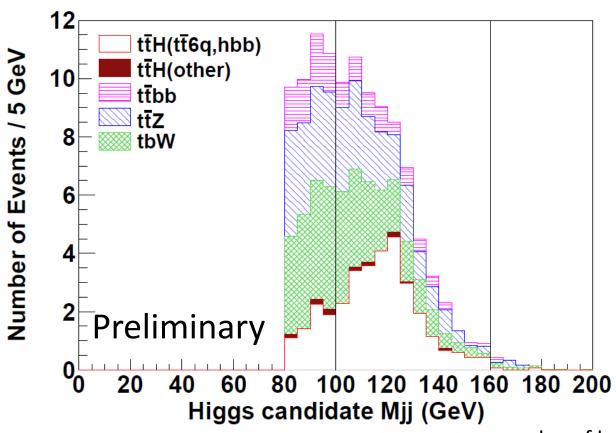
# Jet Energy and M<sub>top</sub> range

- ttg(bb) and tbw event is assumed to have high energy jets related to top decay.
- ttg(bb) events also have low energy jets related to g
- ✓ lowest 3 jets energy sum > 86 GeV
- √ highest 2 jets energy sum < 207 GeV
  </p>
- ✓ top candidate Mjjj ≥ 140 GeV



# Result of event selection (tth→8jets)

select a range of higgs candidate Mjj to maximize  $S/\sqrt{S+B}$ 


√ 100 GeV ≤ higgs candidate Mjj ≤ 160GeV

#### **Preliminary**

| Selection                                                   | $t\bar{t}h(t\bar{t}6j\ hbb)$ | $t\bar{t}h(t\bar{t}all\ hnobb)$ | $t\bar{t}h(t\bar{t}ln4j\ hbb)$ | $t\bar{t}h(t\bar{t}2l2n2j\ hbb)$ | $t ar{t} Z$ | $t\bar{t}g^*(bb)$ | tbW      |
|-------------------------------------------------------------|------------------------------|---------------------------------|--------------------------------|----------------------------------|-------------|-------------------|----------|
| No Cut                                                      | 127.9                        | 205.2                           | 122.6                          | 29.4                             | 1974.6      | 1058.6            | 979807.7 |
| $Y_{8\rightarrow7}$ (8 jets)                                | 118.7                        | 96.4                            | 17.6                           | 0.412                            | 1030.4      | 613.3             | 582660.8 |
| No Isolated Lepton                                          | 97.3                         | 80.8                            | 6.8                            | 0.060                            | 602.2       | 264.7             | 83102.9  |
| b jet candidate $\geq 4$                                    | 57.0                         | 2.1                             | 3.5                            | 0.003                            | 71.3        | 111.3             | 1657.2   |
| $  \operatorname{Jet} \cos \theta   \le 0.99$               | 54.1                         | 2.0                             | 3.1                            | 0                                | 67.3        | 104.8             | 698.2    |
| $\chi^2 \le 9.5$                                            | 38.1                         | 0.9                             | 0.9                            | 0                                | 42.3        | 38.3              | 178.8    |
| $h \text{ Candidate } M_{jj} \ge 80 \text{ (GeV)}$          | 34.9                         | 0.7                             | 0.4                            | 0                                | 34.2        | 20.2              | 89.0     |
| Leading 2 JetEnergySum < 207.5 GeV                          | 34.0                         | 0.7                             | 0.4                            | 0                                | 32.6        | 14.6              | 52.6     |
| Lowest 3 JetEnergySum > 86.65 GeV                           | 33.8                         | 0.7                             | 0.4                            | 0                                | 31.6        | 13.0              | 52.6     |
| $M_{\text{top}} \ge 140 \text{ (GeV)}$                      | 32.8                         | 0.7                             | 0.3                            | 0                                | 30.5        | 11.8              | 34.7     |
| $100 \le h \text{ Candidate } M_{jj} \le 160 \text{ (GeV)}$ | 26.0                         | 0.5                             | 0.06                           | 0                                | 16.9        | 5.6               | 18.7     |
|                                                             |                              | ·                               | ·                              | ·                                |             | ·                 |          |

- no overlay of low Pt background
- $tth \rightarrow 8jet: Nsig = 26.0$
- Nbkgd= 41.74

## Significance (tth >> 8 jets)



- no overlay of low Pt background
- $\sqrt{s}$  = 500 GeV, 1000 fb<sup>-1</sup>
- Cut base + counting analysis
- Nsig/ $\sqrt{\text{Nsig} + \text{Nbkgd}} = 3.16$ ,  $|\Delta g_t/g_t|^{\sim} 15.8\%$

tth > In+6jets channel

## Event Selection (tth -> In+6jets)

• select 6 jets event

$$Y_{ij} = \frac{\min\{E_i^2, E_j^2\}(1 - \cos \theta)}{E_{cm}^2}$$

forced 6 jet clustering
Select events with large Y6→5 as 6jets category if Y6→5 is small, check Y5→4 value

$$\checkmark$$
 "Y6 $\rightarrow$ 5 > 0.002" + "Y6 $\rightarrow$ 5<=0.002 && Y5 $\rightarrow$ 4>0.036"

Isolated Lepton

$$cosθcone = 0.98$$
 $Econe < \sqrt{6(Elep - 15)}$ 

- ✓ require exact one Isolated lepton
- ✓ B jet candidate  $\ge$  4 (btag>=0.85, 0.8, 0.6, 0.2)
- reject events with forward jets
- $\checkmark$  |Jet cosθ| ≤ 0.99

## higgs and top pairing, χ2 Cut

Angle information between higgs candidate jets is effective to choose 
$$+\left(\frac{m_{j_3j_4j_5}-M_{top}}{\sigma_{M_{top}}}\right)^2+\left(\frac{m_{j_4j_5}-M_W}{\sigma_{M_W}}\right)^2$$
 correct jet pair.

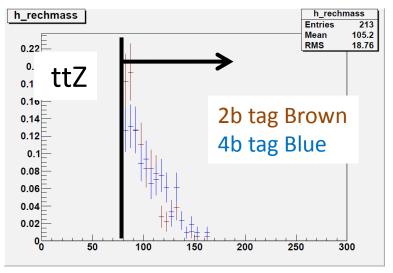
a W mass is reconstructed with Isolated lepton and Missing P

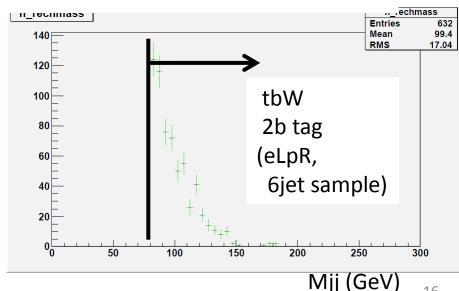
check all combinations and choose a pair with minimum  $\chi^2$  value

reject large  $\chi^2$  events

$$\checkmark$$
  $\chi^2 \le 19$ 

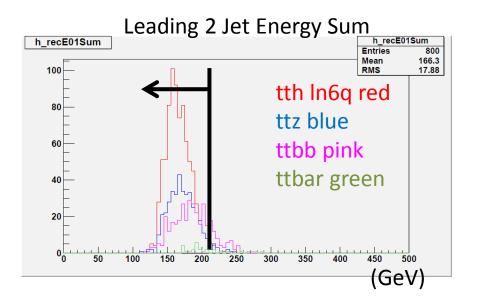
$$\chi^{2} = \left(\frac{\Delta angle(j_{1}, j_{2}) - \Delta angle(higgs\ jj)}{\sigma_{\Delta angle(higgs\ jj)}}\right)^{2}$$

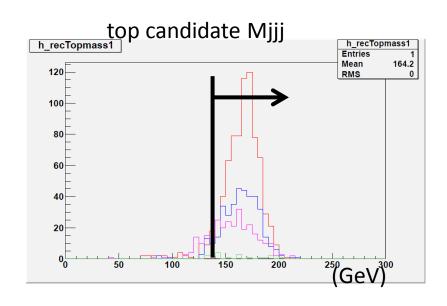

$$ggs$$


$$loose + \left(\frac{m_{j_{3}j_{4}j_{5}} - M_{top}}{\sigma_{M_{top}}}\right)^{2} + \left(\frac{m_{j_{4}j_{5}} - M_{W}}{\sigma_{M_{W}}}\right)^{2} + \left(\frac{m_{j_{6}lv} - M_{top}}{\sigma_{M_{top}}}\right)^{2} + \left(\frac{m_{j_{7}j_{8}} - M_{W}}{\sigma_{M_{W}}}\right)^{2}$$

- require b tag  $\geq$  0.2 to  $j_1$ ,  $j_2$ ,  $j_3$ ,  $j_6$ 
  - Mean value and RMS of angle and reconstructed Mass with jets matched MC infomation
  - Mtop = 171.9GeV
  - sigma Mtop = 15.5 GeV
  - MW = 80.385 GeV
  - sigma MW = 9.8 GeV
  - angle(jj) = 2.468
  - sigma angle(jj) = 0.2858

#### Mjj shape of tbW event


- tbw event shape is difficult to estimate with 4 b tag category due to the small statistics of MC samples.
- compare ttz shape of 2 b tag category and 4 b tag category
- check Mjj shape of ttz events
  - 2 b tag + Y6 $\rightarrow$ 5 < 0.002 && Y5 $\rightarrow$ 4 < 0.036
  - 4 b tag + Y6 $\rightarrow$ 5 >0.002 || Y5 $\rightarrow$ 4>0.036
- In Mjj  $\geq$  80 GeV, the Mjj shape of 2 b tag category is similar to 4 b tag category. (KS probability = 0.02)
- ✓ We estimate Mjj shape of tbW events with 2 b tag category
- √ higgs candidate Mjj ≥ 80 GeV






# Jet Energy and M<sub>top</sub> range

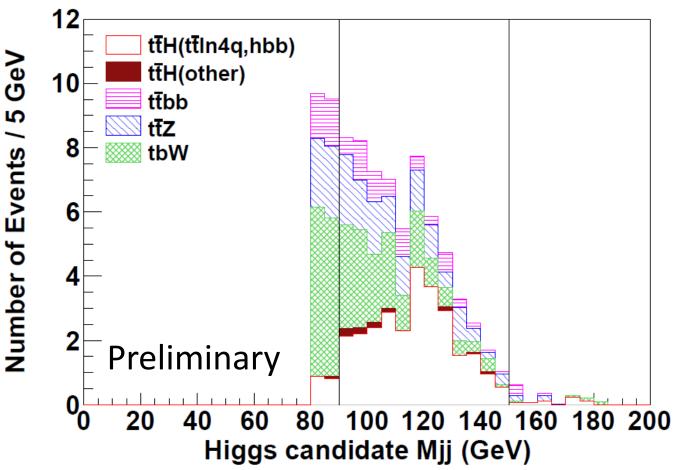
- ttg(bb) and tbw event is assumed to have high energy jets related to top decay.
- √ highest 2 jets energy sum < 210 GeV
  </p>
- √ top candidate Mjjj ≥ 140 GeV





# Result of event selection (tth > In+6jets)

At last, We select a range of higgs candidate Mjj to maximize  $S/\sqrt{S+B}$ 


✓ 90 GeV ≤ higgs candidate Mjj ≤ 150GeV

#### **Preliminary**

| Selection                                                  | $t\bar{t}h(t\bar{t}ln4j\ hbb)$ | $t\bar{t}h(t\bar{t}all\ hnobb)$ | $t\bar{t}h(t\bar{t}6j\ hbb)$ | $t\bar{t}h(t\bar{t}2l2n2j\ hbb)$ | $t\bar{t}Z$ | $t\bar{t}g^*(bb)$ | tbW      |
|------------------------------------------------------------|--------------------------------|---------------------------------|------------------------------|----------------------------------|-------------|-------------------|----------|
| No Cut                                                     | 122.6                          | 205.2                           | 127.9                        | 29.3                             | 1974.6      | 1058.6            | 979807.7 |
| Ycut (6 jets)                                              | 99.6                           | 76.9                            | 8.9                          | 6.3                              | 695.4       | 378.5             | 342027.9 |
| One Isolated Lepton                                        | 82.3                           | 67.5                            | 8.7                          | 1.8                              | 419.9       | 176.7             | 49812.8  |
| b jet candidate $\geq 4$                                   | 45.4                           | 1.2                             | 4.6                          | 1.0                              | 41.4        | 76.6              | 806.3    |
| $  \operatorname{Jet} \cos \theta   \le 0.99$              | 44.4                           | 1.2                             | 4.2                          | 1.0                              | 40.2        | 73.4              | 339.8    |
| Missing $P > 20$                                           | 44.1                           | 1.2                             | 1.1                          | 1.0                              | 36.8        | 66.2              | 311.6    |
| $\chi^2 \le 19$                                            | 39.1                           | 1.0                             | 0.6                          | 0.7                              | 30.5        | 46.5              | 185.8    |
| $h \text{ Candidate } M_{jj} \ge 80 \text{ (GeV)}$         | 34.0                           | 0.6                             | 0.4                          | 0.3                              | 21.2        | 19.7              | 72.1     |
| Leading 2 JetEnergySum < 210 GeV                           | 33.5                           | 0.6                             | 0.3                          | 0.3                              | 20.0        | 15.5              | 49.3     |
| $M_{\rm top} \ge 140 \; ({\rm GeV})$                       | 29.6                           | 0.6                             | 0.06                         | 0.17                             | 17.1        | 9.2               | 26.8     |
| $90 \le h \text{ Candidate } M_{jj} \le 150 \text{ (GeV)}$ | 27.4                           | 0.5                             | 0.06                         | 0.17                             | 12.4        | 6.0               | 16.4     |

- no overlay of low Pt background
- $tth \rightarrow ln+6jet: Nsig = 27.4$
- Nbkgd= 35.64

## Significance (tth→In+6jets)



- $\sqrt{s}$  = 500 GeV, 1000 fb<sup>-1</sup>
- no overlay of low Pt background
- Cut base + counting analysis
- Nsig/ $\sqrt{\text{Nsig} + \text{Nbkgd}} = 3.45$ ,  $|\Delta g_t/g_t|^{\sim} 14.5\%$

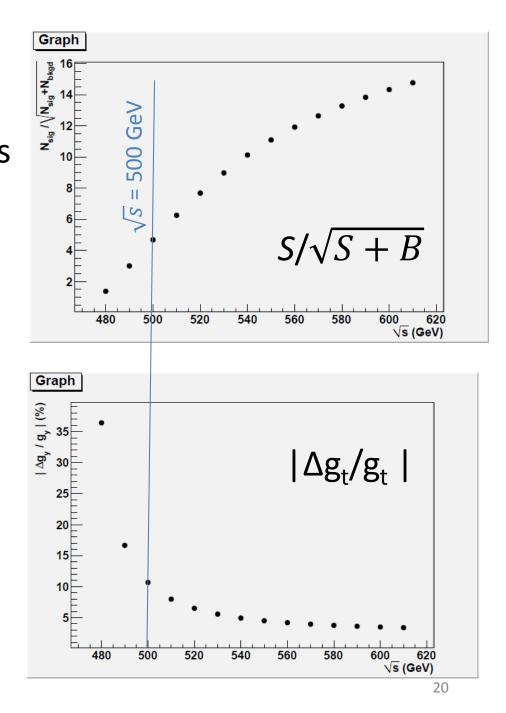
## Rough estimation of significance and $|\Delta g_t/g_t|$ $\sqrt{S} = 480-610 \text{ GeV}$ 1000fb<sup>-1</sup>, tth $\rightarrow$ 8jets & In6jets

#### $\sqrt{S}$ : $S/\sqrt{S+B}$ : $|\Delta g_t/g_t|$ %

 490
 : 3.00
 : 16.6

 500
 : 4.67
 : 10.6

510 : 6.25 : 7.99


520 : 7.68 : 6.50 530 : 8.98 : 5.56

540 : 10.1 : 4.93

550 : 11.1 : 4.50

#### cross section (fb)

 $\sqrt{S}$ : tth(total) : ttz : tbw : ttbb 490 : 0.272 : 1.569 : 1.009 : 991.1 500 : 0.485 : 979.8 : 1.974 : 1.058 510 : 0.725 : 2.373 : 1.105 : 967.0 520 : 0.981 : 2.753 : 1.151 : 953.5 530 : 1.244 : 3.118 : 1.199 :939.4 540 : 1.504 : 3.469 : 1.243 : 924.5 : 1.743 : 1.285 550 : 3.806 : 909.5



### Summary and Plan

- $\sqrt{s}$  = 500 GeV, L = 1000 fb<sup>-1</sup>, Mh = 125 GeV
- no overlay of low Pt background
- tth $\rightarrow$ 8jets  $S/\sqrt{S+B} = 3.16$
- tth $\rightarrow$ In+6jets S/ $\sqrt{S+B}$  = 3.45
- combine  $\rightarrow$  significance = 4.67

$$|\Delta g_t/g_t| = 10.6\%$$

• higher cms energy is preferable for tth channel.

#### to do

- increase MC samples (now running)
- tbw shape
- systematics
  - b tagging efficiency
  - jet energy scale

- .....

• MVA 21

# backup