Higgs recoil mass study using

ZH -> qqH channel @ 250 GeV ILC

Tatsuhiko Tomita (Kyushu Univ.)
Akiya Miyamoto (KEK), Taikan Suehara (Kyushu Univ.)

Reminder : Why qqH channel?

In recoil mass study, leptonic channel such as Z -> e+e-, mu ${ }^{+}$mu- has very good signal/background ratio.

Since four momentum conservation of electron-positron collider, We should not assume any higgs decay mode. ${ }^{50}$
-> Model independent.
But, the branching ratio of Z -> leptonic
 is $\sim 3.5 \%$ for each generation.

On the other hand, the branching ratio of
Z -> hadronic is $\sim 70 \%$.

Reminder : Background estimation

We did forced 4-jet clustering to cut the background of ZZ/WW. (using DBD samples)
And we decided the cut box as $(81,101)$ for ZZ, $(70,90)$ for WW.

After cut, ZZ reduced 50\% and WW reduced 60\%.
Then, we did y -value clustering to do recoil mass study.

$$
y=\frac{2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)}{Q^{2}}=0.005
$$

Reminder : The result so far

As another cut step, we used these variables.

> Ejet $>10 \mathrm{GeV}$ (to reduce small jets) jetPt $>20 \mathrm{GeV}$ (to reduce back to back Z)
> $76 \mathrm{GeV}<$ dijetmass(y-fix) $<106 \mathrm{GeV}$ recoil mass $>110 \mathrm{GeV}$

Applied all cut, we got...

qqH $(22,669)$	ZZ/WW $(266,091)$
significance	42.2σ

hadronic background only

Remain issues - 1
Iso lepton $=0$ not weighted

mode	before	ZZ	WW	ZZWW	recoil	efficiency
$\begin{aligned} & \mathrm{H} \text {->all } \\ & (67,49 \end{aligned}$	$\begin{gathered} 336,638 \\ (100 \%) \end{gathered}$	$\begin{gathered} \hline 291,100 \\ (88.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 302,489 \\ (91.5 \%) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 269,117 \\ & (81.4 \%) \\ & \hline \end{aligned}$	220,989	$\begin{aligned} & 66.8 \% \\ & \pm 0.1 \% \end{aligned}$
$\begin{gathered} 14-26 \% \\ 16 y .0 \%) \end{gathered}$	$\begin{aligned} & 179,303 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 158,164 \\ & (88.2 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 165,144 \\ & (92.1 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 146,994 \\ & (82.0 \%) \end{aligned}$	122,912	$\begin{aligned} & 68.5 \% \\ & \pm 0.1 \% \end{aligned}$
$\begin{array}{r} 54->W W \\ (77.7 \%) \\ \hline \end{array}$	$\begin{aligned} & 67,472 \\ & (100 \%) \end{aligned}$	$\begin{array}{r} \hline 58,192 \\ (86.2 \%) \\ \hline \end{array}$	$\begin{aligned} & 61,388 \\ & (91.0 \%) \end{aligned}$	$\begin{aligned} & \hline 53,571 \\ & (79.4 \%) \\ & \hline \end{aligned}$	43,518	$\begin{aligned} & 64.5 \% \\ & \pm 0.2 \% \end{aligned}$
$\begin{gathered} \mathrm{H}->\mathrm{gg} \\ (79.6 \%) \end{gathered}$	$\begin{aligned} & 38,095 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & \hline 34,561 \\ & (90.7 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 35,364 \\ & (92.8 \%) \end{aligned}$	$\begin{aligned} & \hline 32,316 \\ & (84.8 \%) \\ & \hline \end{aligned}$	24,563	$\begin{aligned} & 64.5 \% \\ & \pm 0.2 \% \end{aligned}$
$\begin{aligned} & \mathrm{H}->\tau \tau \\ & (73.9 \%) \end{aligned}$	$\begin{aligned} & 24,495 \\ & (100 \%) \end{aligned}$	$\begin{array}{r} \hline 21,230 \\ (86.7 \%) \\ \hline \end{array}$	$\begin{aligned} & \hline 20,997 \\ & (85.7 \%) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 18,590 \\ (75.9 \%) \\ \hline \end{array}$	15,940	$\begin{aligned} & \hline 65.1 \% \\ & \pm 0.3 \% \end{aligned}$
$\begin{gathered} \text { H->ZZ } \\ (69.4 \%) \end{gathered}$	$\begin{gathered} 9,724 \\ (100 \%) \end{gathered}$	$\begin{gathered} 8,375 \\ (86.1 \%) \end{gathered}$	$\begin{gathered} 8,898 \\ (94.4 \%) \end{gathered}$	$\begin{gathered} \hline 7,792 \\ (80.1 \%) \\ \hline \end{gathered}$	6,557	$\begin{aligned} & \hline 67.4 \% \\ & \pm 0.5 \% \end{aligned}$
$\begin{gathered} \mathrm{H}->\mathrm{cc} \\ (70.3 \%) \end{gathered}$	$\begin{gathered} \hline 9,830 \\ (100 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8,983 \\ (91.4 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 9,100 \\ (92.6 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8,363 \\ (85.1 \%) \\ \hline \end{gathered}$	6,387	$\begin{aligned} & \hline 65.0 \% \\ & \pm 0.5 \% \end{aligned}$
$\mathrm{H}->r r$ (77.1\%)	$\begin{gathered} 1,510 \\ (100 \%) \end{gathered}$	$\begin{gathered} 1,400 \\ (92.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1,400 \\ (92.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1,306 \\ (86.5 \%) \\ \hline \end{gathered}$	979	$\begin{aligned} & 64.8 \% \\ & \pm 1.2 \% \end{aligned}$

Efficiency is not consistent with each mode... bb/gg/cc is strange!

Remain issues - 1						$\begin{array}{\|c\|} \hline \text { Iso lepton }=0 \\ \text { not weighted } \\ \hline \end{array}$
mode	before	zz	ww	zzww	recoil	efficiency
H->a	These three modes can assume 4 jet and no Iso lepton. But very large inconsistent between bb and gg/cc.					$\begin{gathered} 66.8 \% \\ \hline 0.17 \% \end{gathered}$
H->b						$\begin{array}{r} 68.5 \% \\ \pm 0.1 \% \\ \hline \end{array}$
$\mathrm{H}-\mathrm{>} \mathrm{~W}$						64.5\% $.00 .2 \%$
H->8						$\begin{aligned} & 64.5 \% \\ & \pm 0.2 \% \end{aligned}$
H-> τ						65.19% $\pm 0.3 \%$
H->2						$\begin{gathered} 67.4 \% \\ . \pm 0.5 \% \end{gathered}$
$\mathrm{H} \rightarrow \mathrm{C}$						$\begin{aligned} & 65.0 \% \\ & \pm 0.5 \% \end{aligned}$
H-> r						64:8\% $\pm 1.2 \%$

Efficiency is not consistent with each mode... $\mathrm{bb} / \mathrm{gg} / \mathrm{cc}$ is strange!

Efficiency investigation

The comparison of 4-jet clustering these three modes (bb/cc/gg)

Slightly long tail to lower side is observed only in bb mode. It might be caused neutrino emission from b-quark decay process?

We looked the plot of the result from visible energy.

Visible energy

visible energy (scaled)

bb mode has a larger missing energy than the other two mode.
We should set visible energy cut for 4 jet clustering...

4 jet mass (visible >220 or $<=220$)

mode	besore	ZZ	WW	ZZWW	recoil	efficiency
$\begin{aligned} & \mathrm{H}->\text { all } \\ & (48,2 \% \text {, } \end{aligned}$	$\begin{gathered} 2683,500 \\ (100 \%) \end{gathered}$	$\begin{gathered} \hline 237,277 \\ (90.6 \%) \end{gathered}$	$\begin{gathered} 245,216 \\ (93.2 \%) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 222,250 \\ & (84.9 \%) \\ & \hline \end{aligned}$	180,471	$\begin{aligned} & 68.5 \% \\ & \pm 0.1 \% \end{aligned}$
$\begin{array}{r} 148 \times 26 \\ 454.0 \%) \\ \hline \end{array}$	$\begin{aligned} & 158,766 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 144,512 \\ & (91.3 \%) \end{aligned}$	$\begin{aligned} & 147,660 \\ & \text { (93.1\%) } \end{aligned}$	$\begin{aligned} & 135,179 \\ & (85.5 \%) \end{aligned}$	112,895	$\begin{aligned} & 71.1 \% \\ & \pm 0.1 \% \end{aligned}$
$\begin{array}{r} 5-\mathrm{WW} \\ (55.6 \%) \end{array}$	$\begin{aligned} & \hline 47,904 \\ & (100 \%) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 41,410 \\ (86.4 \%) \\ \hline \end{array}$	$\begin{aligned} & \hline 44,727 \\ & (93.4 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 39,002 \\ & (81.4 \%) \\ & \hline \end{aligned}$	31,013	$\begin{aligned} & 64.7 \% \\ & \pm 0.2 \% \end{aligned}$
$\begin{gathered} \mathrm{H}->\mathrm{gg} \\ (77.6 \%) \end{gathered}$	$\begin{aligned} & 37,133 \\ & (100 \%) \\ & \hline \end{aligned}$	$\begin{array}{r} 33,793 \\ (91.0 \%) \\ \hline \end{array}$	$\begin{aligned} & 34,544 \\ & \text { (93.0\%) } \end{aligned}$	$\begin{aligned} & 31,655 \\ & (85.2 \%) \\ & \hline \end{aligned}$	24,033	$\begin{aligned} & 64.7 \% \\ & \pm 0.2 \% \end{aligned}$
$\begin{array}{r} \mathrm{H}->\tau \tau \\ (8.5 \%) \\ \hline \end{array}$	$\begin{gathered} 2,833 \\ (100 \%) \end{gathered}$	$\begin{gathered} \hline 2,321 \\ (81.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2,624 \\ (92.6 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2,174 \\ (76.7 \%) \\ \hline \end{gathered}$	1,507	$\begin{aligned} & 53.2 \% \\ & \pm 0.8 \% \end{aligned}$
$\begin{gathered} H->Z Z \\ (42.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 5,948 \\ (100 \%) \end{gathered}$	$\begin{gathered} \hline 5,160 \\ (86.8 \%) \\ \hline \end{gathered}$	$\begin{gathered} 5,532 \\ (93.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} 4,847 \\ (81.5 \%) \\ \hline \end{gathered}$	3,885	$\begin{aligned} & 65.3 \% \\ & \pm 0.5 \% \end{aligned}$
$\begin{gathered} \mathrm{H}->\mathrm{Cc} \\ (67.1 \%) \end{gathered}$	$\begin{gathered} \hline 9,376 \\ (100 \%) \\ \hline \end{gathered}$	$\begin{gathered} 8,648 \\ (92.2 \%) \end{gathered}$	$\begin{gathered} 8,700 \\ (92.8 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8,067 \\ (86.0 \%) \\ \hline \end{gathered}$	6,168	$\begin{aligned} & \hline 65.8 \% \\ & \pm 0.4 \% \\ & \hline \end{aligned}$
$\begin{aligned} & H->r r \\ & (68.2 \%) \end{aligned}$	$\begin{gathered} 1,337 \\ (100 \%) \end{gathered}$	$\begin{gathered} 1,243 \\ (93.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1,237 \\ (92.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1,155 \\ (86.4 \%) \\ \hline \end{gathered}$	841	$\begin{aligned} & 62.9 \% \\ & \pm 1.2 \% \end{aligned}$

$\begin{gathered} \hline \text { visible energy } \\ >220 \\ \hline \end{gathered}$	Efficiency (again)					$\begin{array}{\|c\|} \hline \text { Iso lepton }=0 \\ \text { not weighted } \\ \hline \end{array}$
mode	before	zz	ww	zzww	recoil	efficiency
$H->a$						68.5\%
$\frac{(48.2}{\mathrm{H} \gg \mathrm{~b}}$						$\pm 0.1 \%$,
						71.1\%
(54.0)						$\pm 0.1 \%$
$\mathrm{H} \rightarrow \mathrm{~W}$						64.7\%
${\underset{c}{\text { H-> }} \text { (} 55.6}^{(77)}$ Still there is an disagreement with						$\pm 0.2 \%$,
						64.7%
$\frac{(77.6}{H->\tau} \mathrm{bb} / \mathrm{cc} / \mathrm{gg}$ mode after all cut.						$\pm 0.2 \%$
$\begin{aligned} & \text { rist } \\ & (8.50 \end{aligned}$	However...					$\pm 0.8 \%$
$\begin{array}{r}\text { H->2 } \\ (425 \\ \hline\end{array}$						65.3\%
(42.5)						- $\pm 0.5 \%$.
$\begin{gathered} H>0 \\ (67.1 \end{gathered}$						65.8\%
						$\pm 0.4 \%$
$\mathrm{H} \rightarrow \mathrm{r}$						62.9% $+1.2 \%$

Iso lepton $=0$ not weighted

Before recoil cut, these three modes efficiency is almost same. (within 1\%)
-> 4jet Olepton cut is optimized?

visible energy	Efficiency (again)					$\begin{aligned} & \text { Iso lepton = } 0 \\ & \text { not weighted } \end{aligned}$
mode	before	zz	ww	zzww	recoil	efficiency
$\begin{gathered} \hline \text { H->all } \\ (48.2 \%) \end{gathered}$	But this cut (visible energy>220) killed almost all $\mathrm{H}->\tau \tau$ event... we will try tau tagging.					
$\begin{gathered} \mathrm{H}->\mathrm{bb} \\ (54.0 \%) \end{gathered}$						
$\mathrm{H}->\mathrm{WW}$ (55.6\%)						
H->gg .$(77: 6 \%)$. -1						
H-> $\tau \tau$ (8.5\%)						
$\begin{aligned} & \mathrm{H}->\mathrm{ZZ} \\ & (42.5 \%) \end{aligned}$						
H->cc (67.1\%)						
H-r r						

Categories

Now we plan to categorize higgs decay mode using

- the number of jets (2, 3, 4, and more than 5)
- the number of Iso lepton (0,1 , and more than 2)
- visible energy (more/less than 220 or 230)

Try to find optimal cut to reduce efficiency disagreement for each category.
applying optimal cut for each category.
Combine the result of each category.

We can make final decision of optimal cut.

Remain issues - 2

$2 f Z$ bhabha		$2+2$ hadronic	4f ZZ leptonic	4f ZZ semi lep	4f ZZ hadronic	4f WW leptonic	4f WW semi lep - - -	4f WW hadronic	4f W leptonic	4f W semi lep - - -
		144,223	5,529	$132,579$	145,359	13,223		1,779,793	34,200	$484,915$
$5,041$	213	285	498	$\begin{aligned} & 24,595 \\ & \because, \ldots \end{aligned}$	20,710	1,074	$\begin{array}{\|c\|c\|} \hline 148,168, " \\ \because \cdot \\ \hline \end{array}$	187,848	3,702	$\because 66,450$
4f Zee leptonic	4f Zee semi lep	4f Z/W leptonic	4f Znunu leptonic	4f Znunu semi lep	1f_3f	aa_2f	aa_minijet			
8,658	$29,819$	6,316	2,353	$40,860$	658,808	563,486	30,779			
497	5,787	545	139	7,729	2,927	564	30			

After all cut step, there is still a large number of semi-leptonic background.

We need another cut to reduce these event.

2-jet clustering

To cut semi leptonic background, we tried 2-jet clustering.
ZZ->llqq ($I=e, \mu$) , ZZ-> $\nu \nu q q, W W->\mid \nu q q(I=e, \mu)$

n2jetmass

 n2jetmass

n2jetmass

The result of 2-jet mass cut

	4f zee semi lep	4f zZ semi lep	4f Z nunu seni lep	4f WW semi lep	4f W semi lep
before cut	78,394	372,315	138,970	$1,047,659$	564,745
after cut	5,022	28,675	3,368	226,443	97,007
$\%$	6.4%	7.7%	2.4%	21.6%	17.2%

for ZZ, this cut is very useful !
for WW, this cut is not so much useful !
Here we should do tau tagging to decide more optimal cut for WW semi leptonic decay.

Summary and Prospects

- We tried investigation about disagreement of efficiency.
-> Since b-quark emits neutrino in their decay process, there is missing energy. => visible energy cut (good)
-> Tau problem => should do tau tagging.
-> Recoil mass cut has also disagreement, should be investigate.
-> categorize the decay and optimize the cut for each category.
- 2-jet clustering is promising to reduce semi-leptonic background...
-> for ZZ , it is OK.
-> for WW, it is not powerful enough. first we try tau tagging !

