

Higgs Recoil Mass General Meeting vol.6

Tohoku University

Shun Watanuki

2014.4.19

About My Study

• My target is measurement of Higgs mass and cross section using recoil method in Zh events at 250GeV.

Higgs mass	Center of Mass Energy		Spin Polarization	Detector Simulation
125 [GeV]	250 [GeV]	250 fb ⁻¹	$P(e^{-}, e^{+})$ =(-0.8, +0.3)	ILD_01_v05 (DBD ver.)

- Method :
 - Reconstruct Higgs mass of Zh events by recoil
 - Reject BG events
 - Fit recoil mass distribution
 - Do toy-MC study and estimate statistical error
- · Currently, I investigate fitting method further.

Current Status

- Different fitting methods are compared:
- Fitting function
 - GPET
 - Crystal Ball
 - Kernel Estimation (not yet)
 - Physics motivated function (?)
- Binning
 - Small bins (nbin = 175)
 - Large bins (nbin = 70)
 - Unbinned likelihood fit
- BG yields
 - I've fixed all of parameters except height and mean of GPET.
 - Now, BG (3rd order polynomial) yields of fitting function is floated (it should be argued).

※ Floating BG yields leads strange behavior of pull dist.

GPET and Crystal Ball

• Both GPET and Crystal Ball are pure Gaussian in left side, and there seems to be no essential difference of choosing these functions.

Pull Distributions in Binning Method

Unbinned Likelihood Fit

- In some condition of binning method, pull distribution of mean value has strange behavior (e.g. spike, dent, too narrow width).
- In unbinned likelihood fit, such strange pull doesn't appear.
 - namely, strange pull came from floating number of BG and binning effect(?)

Parameter Fixing (1/2)

	p1	p2	р3	mean	width	alpha	n	Y_sig	Y_BG
First fit	float								
toy-MC	fix	fix	fix	float	fix	fix	fix	float	float

estimate mass and cross section error

- Now, I float BG yields parameter of fitting function, because number of BG of toy is also floated.
- But if pull distribution is Gaussian whose width is 1, can I fix BG yields in toy-MC fitting also?
 - Now, anyway pull is correct Gaussian in unbinned fitting.

Parameter Fixing (2/2)

function	BG yields	cross section error	mean error
GPET	fix	3.66%	34MeV
	float	4.01%	34MeV
CBS	fix	3.52%	33MeV
	float	4.05%	34MeV

% all unbinned method, $f_L > 0.31$, $N_{toy} = 3000$

- Fixing or floating BG yields of function affect results significantly.
- If I can fix number of BG in fitting, sure, it's better.

Decide BG Shape

Summary and Plan

Summary

- I'm investigating fitting method further now.
- If BG yields are floated, pull distribution sometimes has strange behavior in binning method.
- In unbinned likelihood fit, such behavior doesn't appear.
- Fixing or floating BG yields affect the results significantly, and if possible, fixing can result in better.

Next plan

- eeX channel fitting
- BG shape parameter fixing
- I'll try optimized bremsstrahlung recovery method (using Junping-san's function)