STUDY OF THE TRACK PROPERTIES FOR ANALYSIS IMPROVEMENT

Masakazu Kurata 04/19/2014

Topics

- Summary of the status of studying track properties
 - dE/dx (backup)
 - Shower profile(backup)
 - Electron type study
 - Muon type study
 - Muon fakes study
- Status of lepton ID including track properties
 - About muon type dE/dx
 - Preliminary results
- Extras for future plan

AWLC14 talk: talk @ simulation session
 will talk @ Higgs/EWSB(so far, seems OK)

STUDY OF THE TRACK PROPERTIES FOR MUON TYPE

STUDY OF MUON TYPE

- Muon type fakes are very similar to the muon tracks
 - Most of shower profiles are almost same distribution

e.g.) shower max

Difference can be seen on absorption length & xl20

STUDY OF MUON TYPE

- But… there are strong momentum dependence
 - Due to the track curvature?

CORRECTION

Mean is corrected to reduce the momentum dependence

• After correction: much better. Dependence reduced

CORRECTED DISTRIBUTION

- Still have difference after correction
 - Good variable for lepton ID?

FAKE STUDY - EACH PARTICLE TYPE

Longitudinal information

- Characterized with showerMax and xI20
- Low energy tracks 20GeV<E<40GeV
- showerMax is scaled using Exp. shower max
- Each particle type (□ ,K,p)

FAKE STUDY - EACH PARTICLE TYPE

- Longitudinal information
 - Characterized with showerMax and xl20
 - Low energy tracks E<20GeV
 - showerMax is scaled using Exp. shower max
 - Each particle type (п ,K,p)

TRANSVERSE INFORMATION

- Characterized with absorption length
- Low energy tracks E<20GeV
- Each particle type (□ ,K,p)
- After correction

TRANSVERSE INFORMATION

- Characterized with absorption length
- middle energy tracks 20GeV<E<40GeV
- Each particle type (□ ,K,p)
- After correction

LEPTON ID

DE/DX STUDY FOR MUON TYPE

- Momentum dependence of dE/dx
 - Line: with muon hypothesis
 - Low momentum fakes look different
- dE/dx dictribution
 - Difference is slight
- ο χ ² distribution with muon hypothesis

•
$$\chi^2 = (\frac{\frac{dE}{dx} - \frac{dE}{dx}exp}{\sigma})^2$$
 5% error imposed

BASIC IDEA

- Lepton ID using likelihood is introduced:
 - Lepton selection imposing just one cut
- Target is to find the leptons from W boson as Higgs daughter
 - In some case, lepton energy is so small
 - Form general lepton ID to make the analysis easier
 - Want to apply it to Z lepton finding too

Likelihood definition:

Isolated lepton likeliness

$$L = \frac{s}{s+b}$$
 $s = \prod s_i$ $b = \prod b_i$

s_i:pdfs of signal variables b_i:pdfs of background variables

• Weight factor is introduced to make the efficiency improved taking log: $\log s = \sum w_i \log s_i$

PRELIMINARY RESULT

- Comparison to old results
 - Cut based, likelihood(old), likelihood(w shower profile & dE/dx)

Туре	Cut based	Likelihood(old)	Likelihood(new)
Signal(%)	98.4	98.1	98.2
bbcssc(%)	7.9	3.1	2.6

- ~18% improvement
- But, this is with E(lep)>15GeV to compare the results
- It is necessary to loosen the energy(momentum) cut to gain the acceptance
- Its necessary to loosen the lepton energy cut
 - E>10GeV or less than 10 GeV?
- Need optimization
 - After optimization, start to the self coupling analysis

EXTRAS - FOR FUTURE PLAN

CHECK THE SECONDARY VERTEX

- Start to check the tracks coming from secondary(thirdary…)
 vertex
 - So far, all the secondary vertex is included

DE/DX

- Separation can be seen
 - Distribution is dirty…
 - It's hard to match to MC particles…

BACK UP

DE/DX

- For improvement, using dE/dx is one of the powerful tools
 - Particle ID for each track will give a large impact to the analysis
 - Application to general analysis component is very wide
 - Lepton ID
 - Track energy correction
 - B-tagging?
 - o Jet clustering?
- Important factor to use dE/dx is: fluctuation
 - TDR: measurement resolution is 5%
 - So, fluctuation from simulation is within 5% without detector effect
- dE/dx definition:

•
$$\frac{dE}{dx} = \frac{energy\ deposit}{flight\ path\ in\ the\ hit(TPC)}$$

- dE/dx can be calculated at any hit point
- Truncated mean is calculated as track dE/dx

$$\left\langle \frac{dE}{dx} \right\rangle = \frac{1}{n} \sum_{i}^{n} \frac{dE_{i}}{dx_{i}}$$
 upper 30%, lower 8%(important!) hits are discarded

to avoid Landau tail(next slide)

→optimization is necessary

EFFECT OF LANDAU TAIL

- Landau tail effect muon tracks
 - dE/dx distribution of tracks
 - fitting convolution of Gaussian and Landau
 - Tail can be seen in the case of no truncation
 - Agree with Astrid's study
- Truncated mean distribution MIP pion(0.3GeV/c<p<0.6GeV/c)</p>
 - Good Gaussian shape

DE/DX FLUCTUATION

Fluctuation of dE/dx using various type of tracks

Estimation of RMS(90)/MEAN

Fluctuations of each particle/each momentum rage 3 - (<5)%!!

DE/DX DISTRIBUTION

- For each particle
 - Polar angle dependence corrected
 - Num. of Hits dependence corrected
 - Scale to $\left\langle \frac{dE}{dx} \right\rangle = 1.0$ for MIP pion

SHOWER PROFILE

- Shower shapes in the calorimeter are different between electron/photon/muon/hadrons
 - So Characters of the clusters will be a good tool to distinguish tracks
 - Especially, electromagnetic shower shape is well known
 - Grabbing those information will boost leptonID efficiency/fake rejection efficiency
- Information extraction is based on the fitting:
 - Well-known EM shower profile

$$f(x_{l}, x_{t}) = ac \frac{(c(x - x_{l0}))^{b-1} \cdot \exp(-c(x - x_{l0})) \cdot \exp(-dx_{t})}{\Gamma(b)}$$

- o In addition, hit based variable is introduced to identify shower start
 - XI20 length from cluster start to 20% of total energy deposit

DEFINITION OF THE SHOWER AXIS

- Shower axis is the direction of the track intruding into calorimeter
 - This correction will change the shower start distribution from last talk
- All the hit points(x,y,z) are converted to longitudinal and transverse components along to the shower axis

SHOWER PROFILE

longitudinal

transverse

