HIGGS SELF-COUPLING ANALYSIS WITH $H \rightarrow WW^*$

Masakazu Kurata 05/02/2014

STATUS

• Lepton ID study

- Single lepton is OKOptimize likelihood
- Problem: $Z \rightarrow ll$ finding
 - Change the p.d.f.s to save second lepton more
 - Loosen the operation point for second lepton finding
 - \rightarrow of course, single lepton sample & dilepton sample are exclusive each other
 - Start to apply the lepton ID to the analysis
- Particle ID is stuck...
 - Establishing the strategy and optimization will be started next week...

LEPTON ID

LEPTON ID FOR SINGLE LEPTON

• Signal detection efficiency – set almost same sensitivity

- Signal is HH→(bb)(WW*)→(bb)(lvjj)
- Old means without shower profile & dE/dx

method	Cut based	Likelihood_old	Likelihood_new
Signal(%)	98.1	98.1	97.8

• Background rejection efficiency

method	Cut based	Likelihood_old	Likelihood_new
ttbar - lep+jets(%)	62.2	-	62.4
ttbar – allhad(%)	7.9	3.1	2.3
ttbar – dilepton(%)	47.2	-	17.9
HH→(bb)(bb) (%)	-	2.3	1.0

Note: lepton energy threshold is loosened on likelihood_new
o From E(lep)>15GeV → E(lep)>10GeV

$\begin{array}{c} \text{LEPTON ID FOR } Z \rightarrow \text{LL DECAY} \\ \hline \end{array}$

- Problem: e+e- finding is so bad...
 - Second lepton finding is difficult
 - As num. of tracks is large in the event, lepton might be buried in the tracks...
 - Change cone energy p.d.f. for second lepton
 - Loosen the operation point for second lepton
- Z→ll finding preliminary result
 - Signal efficiency

signal	Z→ee, µµ
HH→(bb)(WW*)(%)	90.1
HH→(bb)(bb)(%)	89.6

• Background rejection efficiency –use ttbar samples

method	Lep+jets	allhad	dilepton
Cut base(%)	0.79	0.071	17.3
Likelihood_new(%)	0.60	0.050	20.5

Todo

- Apply lepton ID (& jet pairing) to Self-coupling analysis
 - Lep+jets & dilepton+jets first
- Particle ID
 - Optimize and strategy for good particle ID

- Integrating Ecal/Hcal good estimation in Hcal
 - Very difficult!!
 - Fit function gives up fitting...

PARTICLE ID - BACKUPS

PARTICLE ID STRATEGY

- Based on the likelihood
 - Tracks will be assigned to the particle class with maximum likelihood
- Electron and muon will be identified easily
 - Electron or not
 - Muon or not
 - Hadrons can be classified after electron and muon selection

LIKELIHOOD RESULT FOR EACH PARTICLE TYPE

• Electron & muon

- Check the particle electron or not
- Check the particle muon or not

LIKELIHOOD RESULT FOR EACH PARTICLE TYPE

• hadrons

• Identify each particle type

TODO

• Solve the efficiency problem

• Apply lepton ID (& jet pairing) to Self-coupling analysis

- Lep+jets & dilepton+jets first
- Particle ID
 - Optimize and strategy for good particle ID

• Integrating Ecal/Hcal - good estimation in Hcal

- Very difficult!!
- Fit function gives up fitting...