Radiative corrections to Higgs coupling constants in two Higgs doublet models

MARIKO KIKUCHI in Univ. of Toyama

Collaborators: Shinya Kanemura (Univ. of Toyama), Kei Yagyu (National Central Univ.)

S. Kanemura, M. Kikuchi, K. Yagyu, Physics Letters B731 (2014) 27-35

The 37th General Meeting of ILC Physics Subgroup 2014/06/21

Contents

- Introduction
 - (Higgs couplings as a probe of new physics)
- Two Higgs doublet models
- The pattern of Yukawa couplings deviations from SM predictions
- Calculations of Higgs coupling constants at 1 loop level
- Summary

Introduction

- A Higgs boson was discovered, but are there only one Higgs boson ?
- There is a possibility of an extended Higgs sector.
- We should determine the shape of the Higgs sector.

Relations between Higgs sectors and new physics scenario

- B-L Gauge, Dark Matter, …
- MSSM, Dark Matter, m_v (Radiative Seesaw), …
- m_v (Type II Seesaw), …

- Φ + S (Singlet)
- $\Phi + \Phi$ (Doublet)
- $\Phi + \Delta$ (Triplet)

The shape of the Higgs sector is a probe of new physics

Physics of h (SM-like Higgs boson)

- SM-like Higgs coupling constants can <u>deviate</u> from predictions of SM by new physics effects.
 A pattern of the deviations depend on the Higgs sector !
- Higgs coupling constants can be measured with high precision by future collider experiments(ILC).
- We determine the Higgs sector by comparing precision measurements with precise calculation with radiative corrections.
 We can determine new physics !!

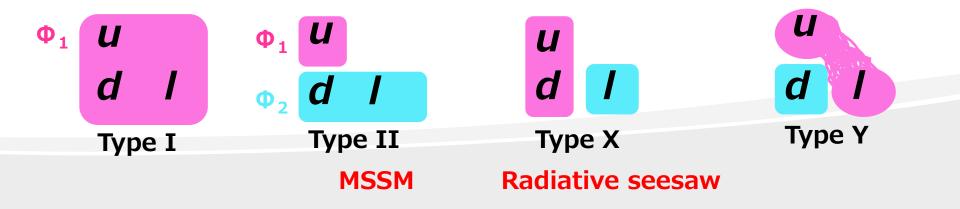
Two Higgs doublet models Φ_1, Φ_2 (isospin doublets)

In general, there is the possibility to cause FCNCs. To avoid FCNCs, Φ_1 and Φ_2 should have different quantum numbers each other.

$$\begin{array}{c} \Phi_1 \rightarrow \ + \ \Phi_1 \\ \Phi_2 \rightarrow \ - \ \Phi_2 \end{array}$$

4 types of Yukawa interactions

Barger, Hewett, Phillips(1990), Aoki, Kanemura, Tsumura, Yagyu(2009), Logan, Su, Haber, ….



Higgs potential
• CP invariance & softly broken Z₂

$$V_{\text{THDM}} = m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - (m_3^2) \Phi_1^{\dagger} \Phi_2 + \text{h.c.})$$

 $+ \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{1}{2} \lambda_5 \left[(\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right].$
• Mass eigenstates
 $\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} H \\ h \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} z \\ A \end{pmatrix},$
 $\begin{pmatrix} \omega_1^+ \\ \omega_2^+ \end{pmatrix} = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \omega^+ \\ H \end{pmatrix} \cdot \mathbf{h},$
SM-like Higgs
 $v^2 = v_1^2 + v_2^2 = (246 \text{GeV})^2, \quad tan\beta = \frac{v_2}{v_1}$

 $m_{h\prime}$, $m_{H\prime}$, $m_{A\prime}$, $m_{H+\prime}$, v, α , β , M^2

Higgs coupling measurements at ILC Which couplings can we obtain accurate data from ?

h-couplings can be measured typically by O(1) % !!

All couplings are important !

Gauge	couplings	hVV
<u> </u>	<u> </u>	

All types of Yukawa couplings *hff*

carre :	ILC(250)	ILC(500)	ILC(1000)	ILC(LumUp)
\sqrt{s} (GeV)	250	250 + 500	250 + 500 + 1000	250 + 500 + 1000
L (fb ⁻¹)	250	250 + 500	250 + 500 + 1000	1150 <u>+1600+</u> 2500
$\gamma\gamma$	18 %	8.4 %	4.0 %	2.4 %
gg	6.4 %	2.3 %	1.6 %	0.9 %
WW	4.8 %	1.1 %	1.1 %	0.6 %
ZZ	1.3 %	1.0 %	1.0 %	0.5 %
$t\overline{t}$	_	14 %	3.1 %	1.9 %
$b\overline{b}$	5.3 %	1.6 %	1.3 %	0.7 %
$\tau^+\tau^-$	5.7 %	2.3 %	1.6 %	0.9 %
$c\overline{c}$	6.8 %	2.8 %	1.8 %	1.0 %
$\mu^+\mu^-$	91%	91%	16 %	10 %
$\Gamma_T(h)$	12 %	4.9 %	4.5 %	2.3 %
hhh	-	83 %	21 %	13 %
BR(invis.)	< 0.9 %	< 0.9 %	< 0.9 %	< 0.4 %

ILC WHITE PAPER 1303.3570.

Gauge couplings (*hWW, hZZ*)

$$\sum_{i} \frac{h}{2} \frac{g^2}{\nu_i h_i} W^+ W^-$$

$$\kappa_W \equiv \frac{g_{hWW(2HDM)}}{g_{hWW(SM)}} = \sin(\beta - \alpha)$$

Mixing of fields

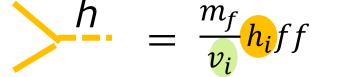
$$\left(\begin{array}{c}h_1\\h_2\end{array}\right) = \left(\begin{array}{cc}c_\alpha & -s_\alpha\\s_\alpha & c_\alpha\end{array}\right) \left(\begin{array}{c}H\\h\end{array}\right)$$

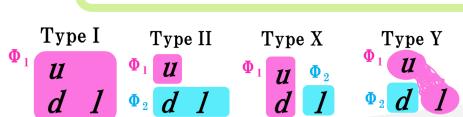
Mixing of VEVs

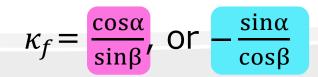
Yukawa couplings (*htt, hbb, ł*

$$\tan\beta = \frac{v_2}{v_1}$$

$$\tan \beta = \frac{2}{v_1}$$
, $v^2 = v_1^2 + v_2^2$







Gauge couplings (*hWW*, *hZZ*)

$$\int_{i}^{h} = \sum_{i} \frac{g^2}{2} v_i h_i W^+ W^-$$

$$\kappa_W \equiv \frac{g_{hWW(2HDM)}}{g_{hWW(SM)}} = \sin(\beta - \alpha)$$

SM like limit

$$\kappa_V = \sin(\beta - \alpha) \rightarrow 1$$

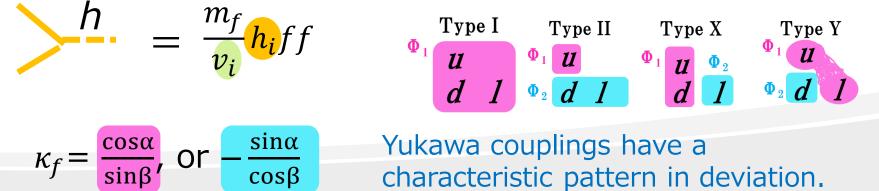
In this case

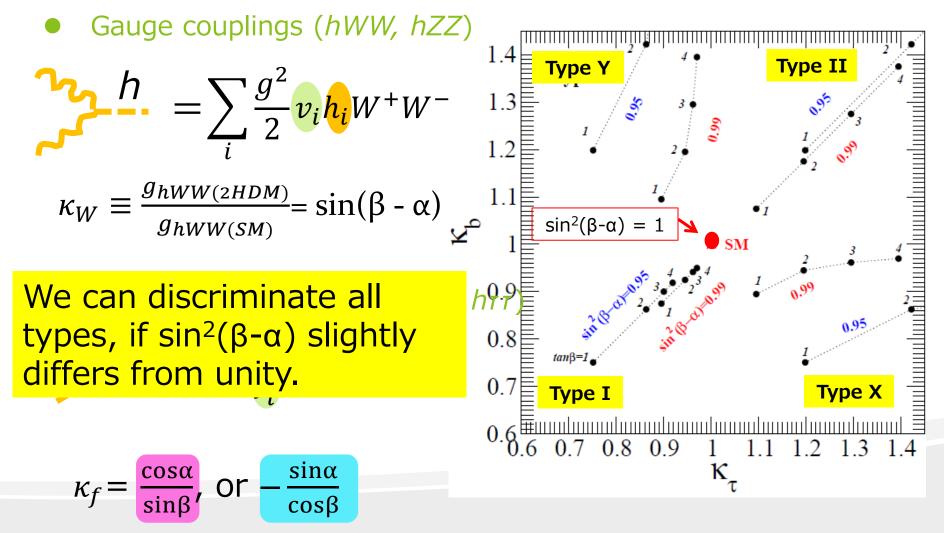
characteristic pattern in deviation.

$$\kappa_{f} = \frac{\cos \alpha}{\sin \beta} (, -\frac{\sin \alpha}{\cos \beta}) \rightarrow 1$$

Yukawa couplings (*htt, hbb, htt*)

cosβ

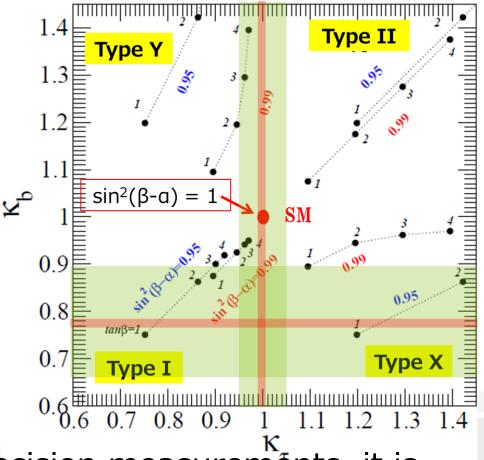




Coupling measurements

LHC3000fb⁻¹ htt 5.4 % hbb 11 %

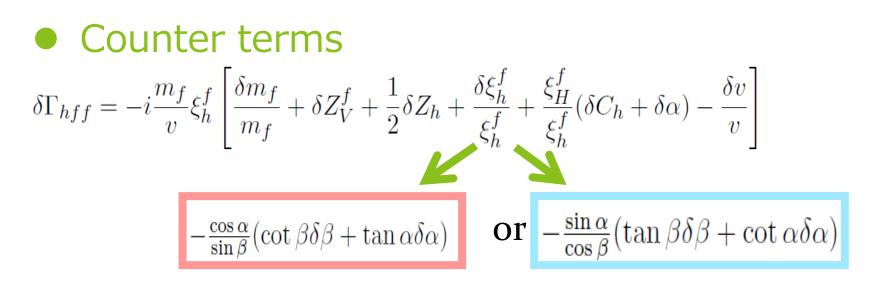
ILC1TeV htt 0.9 % hbb 0.7%



To compare with future precision measurements, it is essentially important to evaluate loop contributions.

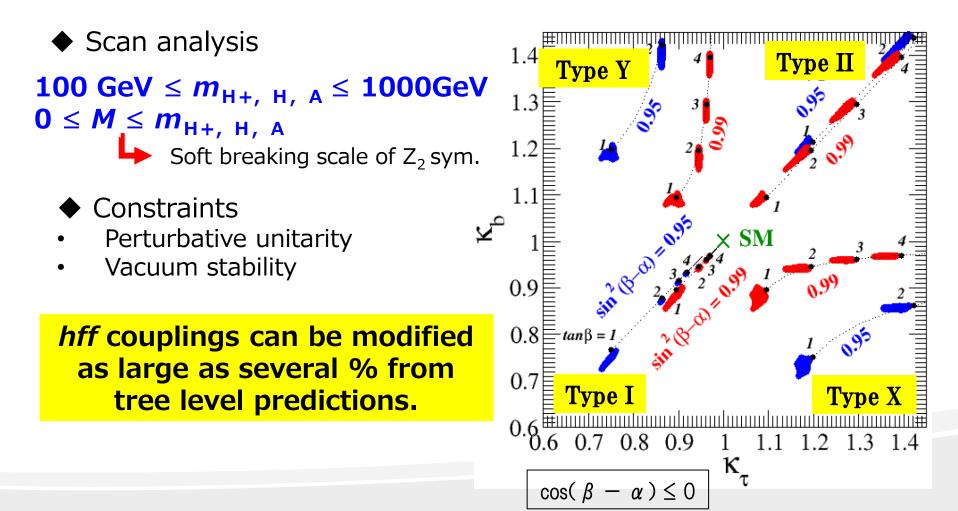
Renormalized couplings

 $\hat{\Gamma}_{hff}(p_1^2, p_2^2, q^2) = \Gamma_{hff}^{\text{tree}} + \delta\Gamma_{hff} + \Gamma_{hff}^{1\text{PI}}(p_1^2, p_2^2, q^2)$



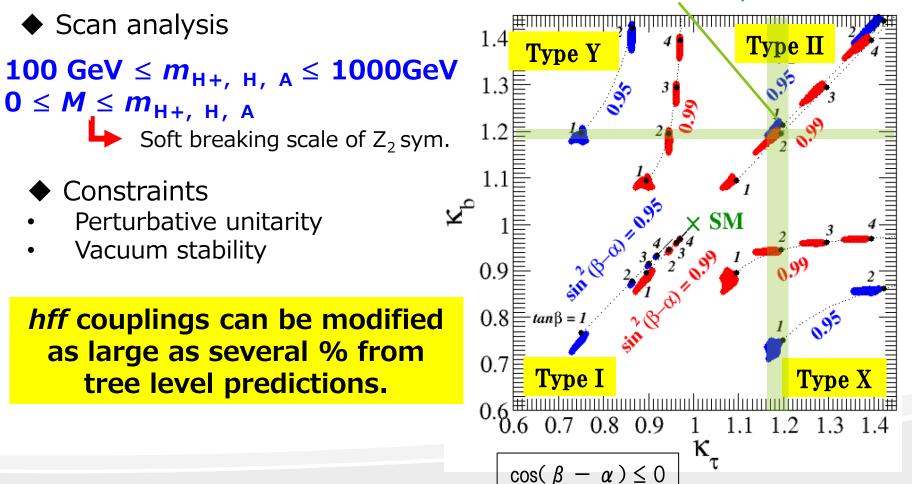
• Deviations and scale factors at 1 loop level $\Delta \hat{\Gamma}_{hff} = \frac{\hat{\Gamma}_{hff}(p_1, p_2, q)_{THDM} - \hat{\Gamma}_{hff}(p_1, p_2, q)_{SM}}{\hat{\Gamma}_{hff}(p_1, p_2, q)_{SM}} \qquad \hat{\kappa}_f \equiv \frac{\hat{\Gamma}_{hff}(m_f^2, m_f^2, m_h^2)_{THDM}}{\hat{\Gamma}_{hff}(m_f^2, m_f^2, m_h^2)_{SM}}$

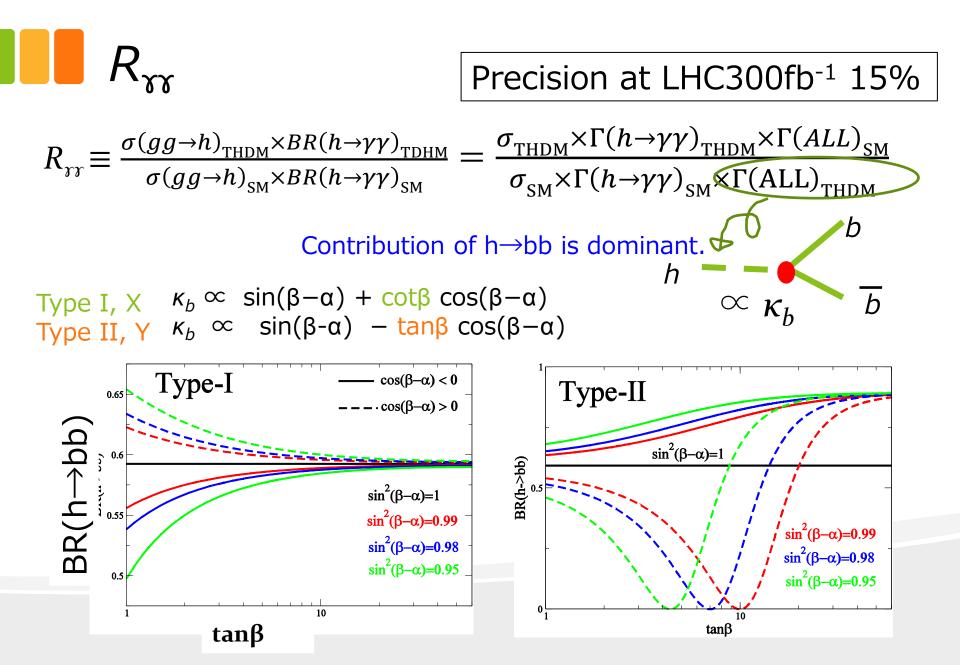
$\kappa_{\tau} vs \kappa_{b}$ at 1 loop level



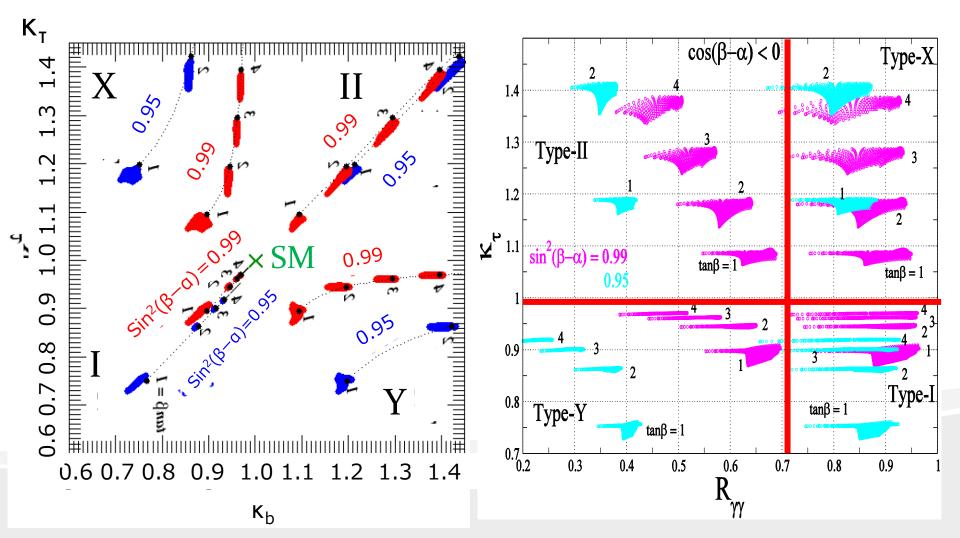
$\kappa_{\tau} vs \kappa_{b}$ at 1 loop level

Measurement accuracy at ILC500



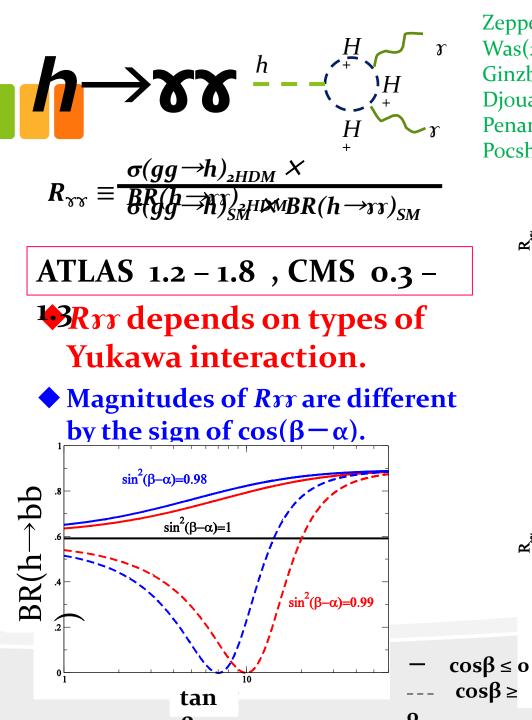


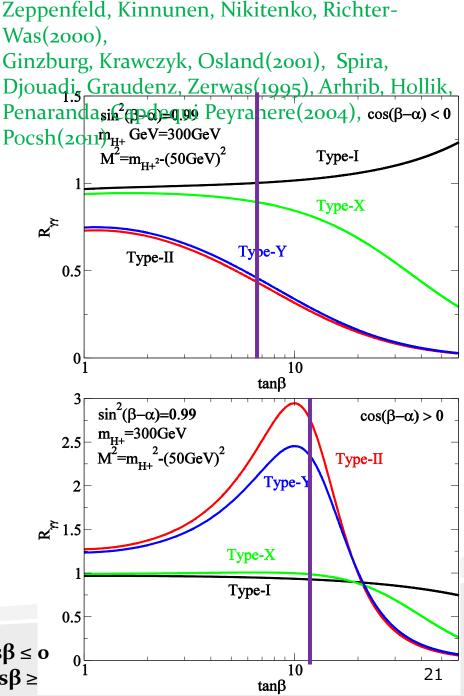
We may check the pattern in deviation of *hbb* by evaluating R_{xx} .



- In this talk, we focused on 2HDMs with softly broken Z2 symmetry, and calculate all Yukawa couplings including electroweak radiative corrections.
- Since Yukawa couplings can deviate by several % from tree predictions by extra Higgs loop corrections, we should take into account these contributions when we compare theory predictions with ILC data.
- The characteristic pattern in deviations does not change even including radiative corrections. Namely, we can discriminate the type of 2HDMs when gauge couplings hWW(hZZ) slightly deviate (as long as $K_W \approx 0.99$) from SM predictions.
- Furthermore, by comparing loop corrections with precision data, we may obtain information of inner parameters.

			Z_2	cha	rge						Mi	xing f	actor			
	Φ_1	Φ_2	Q_L	L_L	u_R	d_R	e_R	ξ_h^u	ξ_h^d	ξ_h^e	ξ^u_H	ξ^d_H	ξ^e_H	ξ^u_A	ξ^d_A	ξ^e_A
Type-I	+	_	+	+	_	_	_	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\cot \beta$	$-\cot\beta$	$-\cot\beta$
Type-II	+	_	+	+	_	+	+	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\cot \beta$	aneta	$\tan\beta$
Type-X	+	_	+	+	_	_	+	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\cot \beta$	$-\cot\beta$	$\tan\beta$
Type-Y	+	_	+	+	_	+	_	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\cot \beta$	aneta	$-\cot\beta$



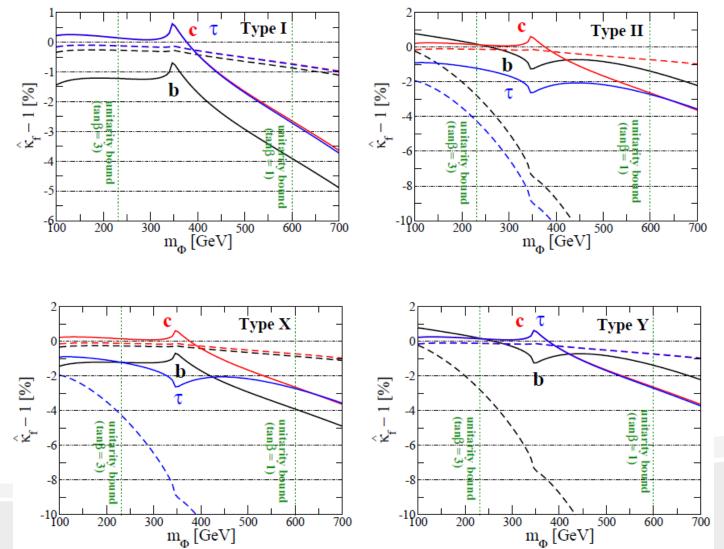


Kanemura, Kikuchi, Yagyu(2013)

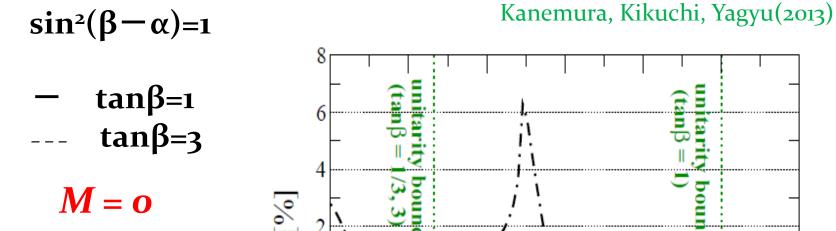
 $sin^2(\beta - \alpha) = 1$

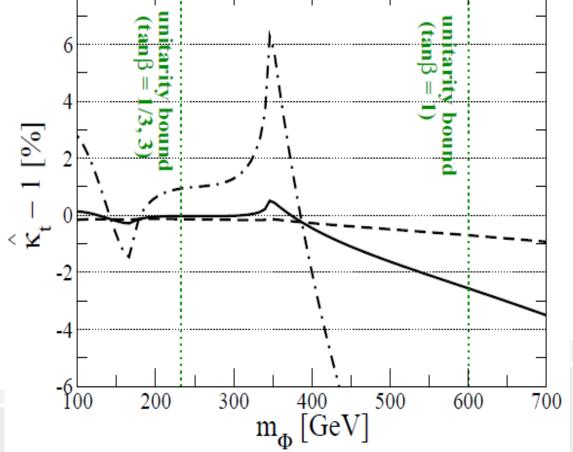
tanβ=1
 tanβ=3

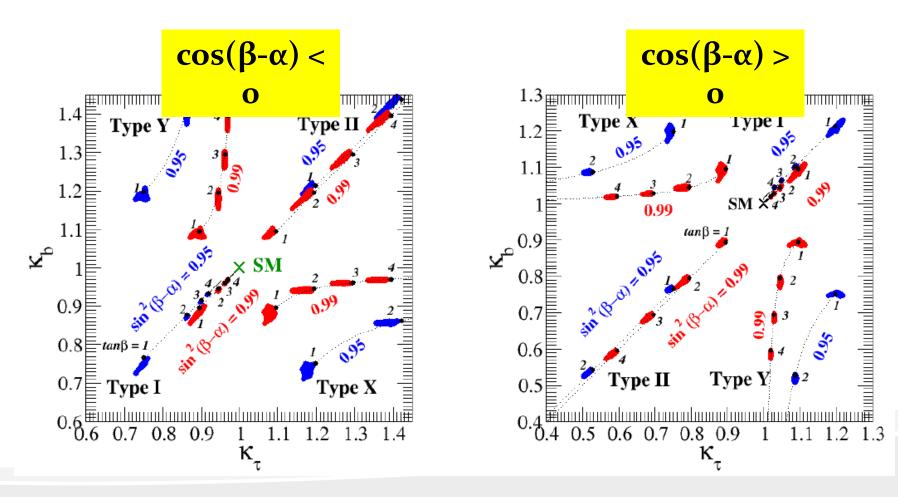
Deviations in hff M = 0

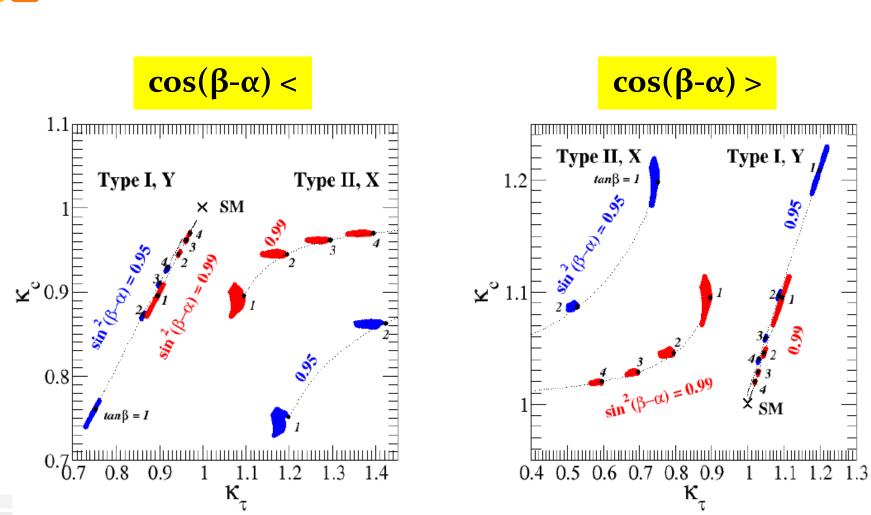


Deviations in htt

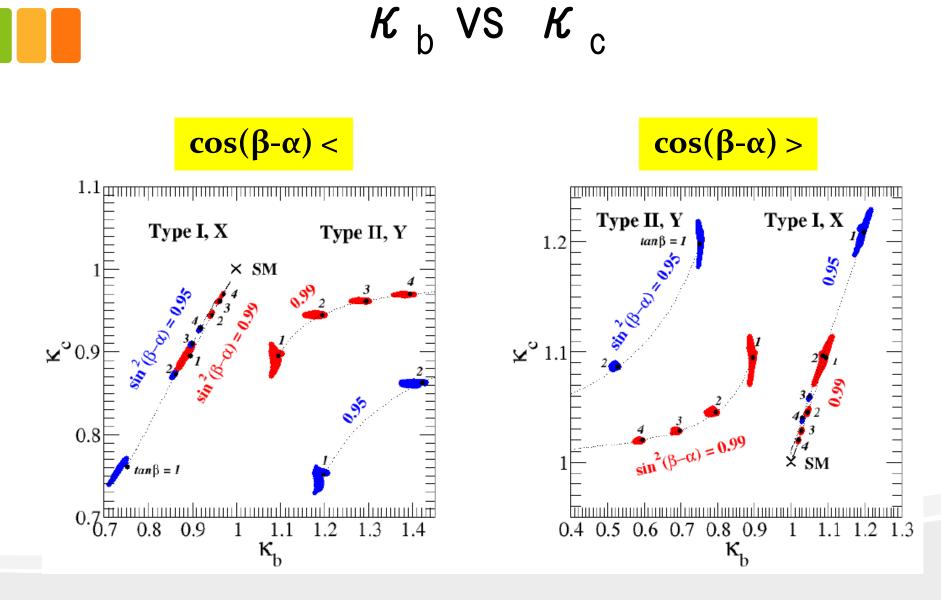








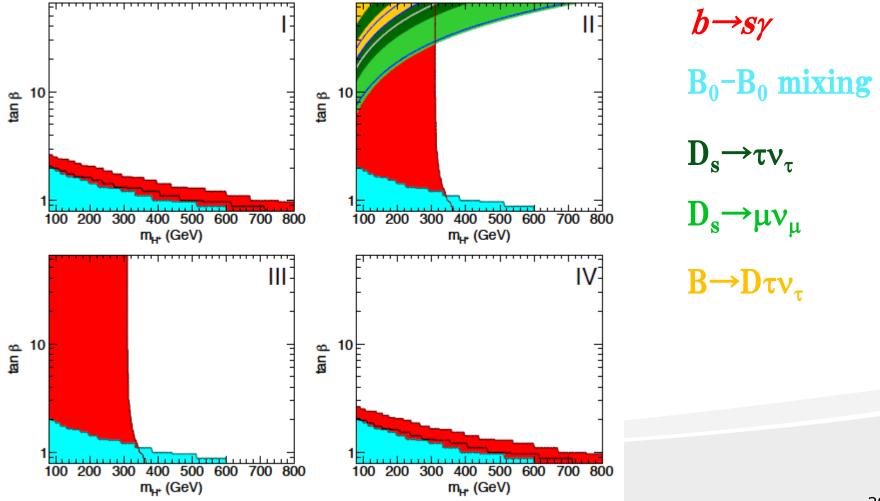
 \mathcal{K}_{τ} VS \mathcal{K}_{c}



SM like limit	$\frac{\xi_A^u \xi_A^d \xi_A^e}{\cot\beta - \cot\beta - \cot\beta}$					
$sin^2(\beta - \alpha) = 1$, $m_{H+} = m_A$	$\frac{\cot\beta}{\cot\beta} \ \tan\beta \ \tan\beta$					
$= m_H = m_{\phi}$	$\cot\beta - \cot\beta \ \tan\beta$					
$\hat{\Gamma}_{hff}^{\rm THDM}(m_f^2,m_f^2,m_h^2)$	$\cot\beta \ \tan\beta \ -\cot\beta$					
$\simeq \hat{\Gamma}_{hff}^{\rm SM}(m_f^2, m_f^2, m_h^2) + \frac{m_f}{v} \frac{1}{16\pi^2} \left\{ \frac{2m_{f'}^2}{v^2} \xi_A^d \cot\beta \left[(m_h^2 - 2m_f^2) C_{12}(m_{f'}, m_{\Phi}, m_{\Phi}) \right] \right\}$						
$+ (2m_{f'}^2 - m_f^2)C_0(m_{f'}, m_{\Phi}, m_{f'}) + v\lambda_{\Phi\Phi h}C_0(m_{\Phi}, m_{f'}, m_{\Phi})\Big]$						
$+4\lambda_{\Phi\Phi h}^{2}\frac{d}{dp^{2}}B_{0}(p^{2};m_{\Phi},m_{\Phi})\Big _{p^{2}=m_{h}^{2}}-\frac{6m_{t}^{2}}{v^{2}}I_{f}\xi_{A}^{f}\cot\beta B_{0}(m_{\Phi}^{2};m_{t},m_{t})\qquad \delta\beta_{h}$						
$+ \left[\frac{6m_t^4}{v^2(m_{\Phi}^2 - m_h^2)} I_f \xi_A^f \cot \beta \left[\left(4 - \frac{m_h^2}{m_t^2} \right) B_0(m_h^2; m_t, m_t) - \left(4 - \frac{m_{\Phi}^2}{m_t^2} \right) B_0(m_{\Phi}^2; m_t, m_t) \right] \right]$						
$+ \left\{ \frac{6\lambda_{\Phi\Phi h}\lambda_{\Phi\Phi H}}{m_{\Phi}^2 - m_h^2} I_f \xi_A^f \left[B_0(m_h^2; m_{\Phi}, m_{\Phi}) - B_0(m_{\Phi}^2; m_{\Phi}, m_{\Phi}) \right] \right\}, \delta C_h$						
$\lambda_{\Phi\Phi h} = \frac{m_h^2 + 2m_\Phi^2 - 2M^2}{v}, \lambda_{\Phi\Phi h} = m_H^2 + 2m_\Phi^2 $	$\Phi_{\Phi \Phi H} = \frac{M^2 - m_{\Phi}^2}{v} \cot 2\beta_{7}$					

Characteristic of couplings						
	2HD	Higgs triplet				
hff Yukawa couplings	cb τ $\cos(\beta - \alpha) < o$ I \downarrow \downarrow \downarrow II \uparrow \uparrow X \downarrow \uparrow Y \downarrow \uparrow Y \downarrow \downarrow H \downarrow A \downarrow	 model ① V_Δ / V_φ <<1 → Mixing is very small. ② Fermion don't couple to Δ. Deviations are very 				
hV Gauge couplings	$< \text{Multi-doublet model} >$ $g_{hVV} = g_{hVV}^{SM} \times \kappa_{hVV}$ $\kappa_{hVV} = -\sin\alpha \cos\beta + \cos\alpha$ $\sin\beta$ $\kappa_{hVV} \leq 1$	Gauge couplings can be larger than SM predictions because of CG coefficient. $\kappa_{hww} = \cos\beta \cos\alpha + 2 \sin\beta$ sinα $\kappa_{hVV} \ge 1$ is possible				

Constraints from flavor experiments

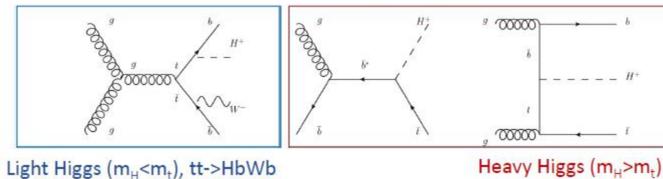


Charged Higgs

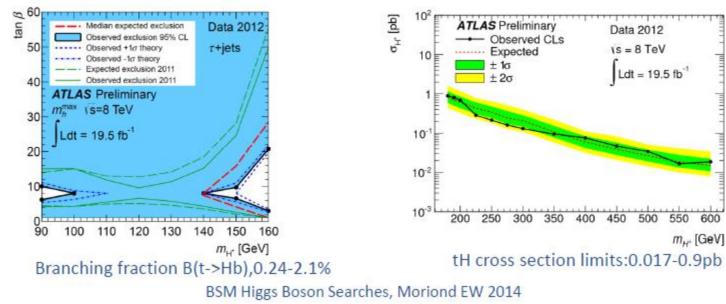
Search for H-> τv , using assumption B(H-> τv =1)

Different channels dominate depending on m_H/m_t

ATLAS-CONF-2013-09



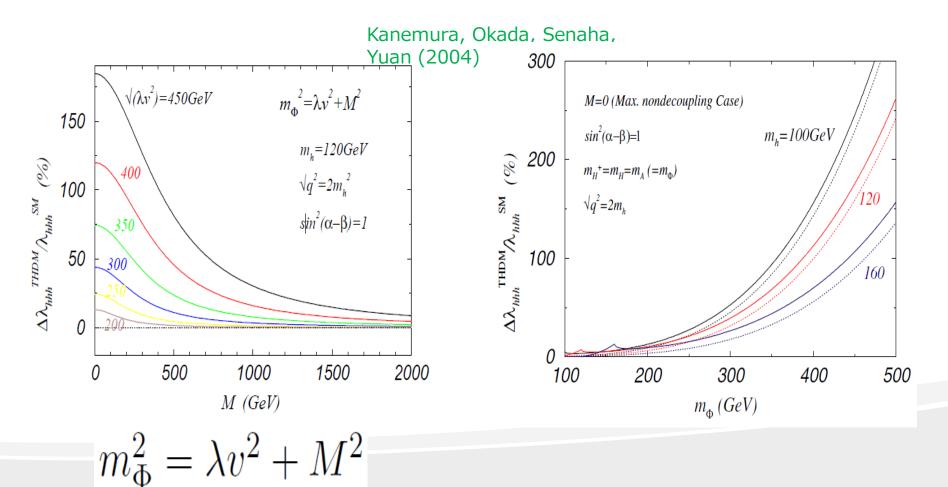
Light Higgs (m_H<m_t), tt->HbWb



Paul Thompson

21

| 2HDMのhhh結合



h coupling constants

- $m_X \propto g_X v$ in the SM
- \bullet If the Higgs sector is extended, \cdots

Coupling constants of *h* deviate from SM predictions by

- Field mixing
- Extra Higgs loop contributions

We may distinguish the Higgs sector by using the pattern of deviation of couplings.

$$\Delta\Gamma_{hff} \equiv \frac{\Gamma_{hff}^{\text{THDM}} - \Gamma_{hff}^{\text{SM}}}{\Gamma_{hff}^{\text{SM}}}$$