Neutrino mass, dark matter and baryogenesis from the supersymmetric gauge theory with confinement

> Naoki Machida (U. of Toyama) Collaborators : Shinya Kanemura (U. of Toyama) Tetsuo Shindou (Kogakuin U.) The 37th ILC KEK General Meeting 2014/06/21

Contents

- Introduction
- New phenomena beyond the Standard Model and these solutions

 Tiny neutrino mass, Dark matter, Baryon asymmetry of the Universe

- Fundamental theory
- SUSY SU(2)_H gauge theory
- Benchmark scenario
- Collider phenomenology
- Summary

Introduction

The SM-like Higgs boson has been discovered at the LHC.

- The mass is 126 GeV.
- Spin/parity is 0⁺.
- Coupling constants are consistent with the SM.
- No other new particles are found.

The SM is very successful!

Introduction

The SM-like Higgs boson has been discovered at the LHC.

$$V_{\rm SM} = \frac{1}{2}\mu^2 |\Phi_{\rm SM}|^2 + \frac{1}{4}\lambda_{\rm SM} |\Phi_{\rm SM}|^4$$

- One Higgs doublet, Minimal form $\Phi_{\rm SM}~\leftarrow$ No principle
- EWSB by negative mass suare $\mu^2 < 0$
- Higgs force $\lambda_{
 m SM}$

← What is origin?

We do not know the essence of Higgs sector.

Problems in the SM

Baryon asymmetry of the Universe

These problems can not be explained in the SM.

New physics beyond the SM must exist.

New physics and Extended Higgs sector

Minimal Higgs sector $\Phi_{SM} \leftarrow No \text{ principle}$

Extended Higgs sectors

SM doublet + Singlet SM doublet + Doublet SM doublet + Triplet SM doublet + ,,,,

Extended Higgs sector can explain new physics.

Dark Matter Baryogenesis Neutrino mass

Inert scalar C and CP violation / 1st order phase transition Type-II seesaw, Radiative seesaw Electroweak Baryogenensis : 1st Order Phase Transition

Sakharov's conditions

$$\phi_C/T_C \gtrsim 1$$

- 1. C and CP violation
- 2. B-number violation
- 3. Departure from thermal equilibrium

High temperature expansion $V_{eff}(\varphi, T) \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4}\varphi^4 + \cdots$

In the SM,

Conflict!

 $\phi_C/T_C \propto 1/m_h^2 \to m_h < 50 \,{\rm GeV}$

1st Order Phase Transition and *hhh* coupling in 2HDM

However, two Higgs doublet model can satisfy $\phi_C/T_C\gtrsim 1$. Extra scalar boson loops enhance ϕ_C/T_C .

$$H, A, H^{\pm} \quad m_{\Phi}^2 = M^2 + \lambda_i v^2$$

Kanemura, Okada, Senaha (2005)

Non-decoupling effect deviates *hhh*, O(10) % .

It can be tested.

There are C and CP violation terms.

Neutrino mass : Radiative seesaw scenario

- Inert scalars and Z2-odd right-handed neutrinos are introduced.
- Tiny neutrino masses are generated by loop-level diagram.
- The lightest Z2-odd particle can be DM candidate.

Ma (2006)

Neutrino mass diagram

Ma model

 Φ' : Inert scalar doublet ν_R : Z₂-odd right-handed neutrinos

• Dark matter

Because of unbroken Z₂ symmetry, lightest Z₂-odd particle is a dark matter candidate.

Aoki-Kanemura-Seto model

M. Aoki, S. Kanemura, O. Seto PRL. 102 (2009) 051805

-odd

This model can explain neutrino mass, dark matter and baryogenesis.

Higgs sector

$$\Phi_{\rm SM} + \Phi_2 + S^{\pm} + \eta^0 + \nu_R \qquad \mathsf{Z}_2$$

- Neutrino mass and dark matter are similar to the Ma model.
 - Tiny neutrino mass is generated by three loop diagram.
 - Unbroken Z₂ symmetry guarantees DM stability.

Electroweak baryogenesis

- \clubsuit Extra boson loops enhance $\phi_C/T_C\,$, so that $\,\phi_C/T_C\gtrsim 1\,$ can be satisfied.
- This model contains 2 doublets so that there are C and CP violation source.

What is a fundamental theory?

- Electroweak baryogensis requires strong coupling constant in the Higgs sector. This leads Landau pole at O(10)TeV.
- Origin of the Higgs force is SUSY gauge theory with confinement above Landau pole.
- Higgs sector at low energy scale is composite states which is formed by fundamental fields. $H_{ij} \sim T_i T_j$

SUSY SU(2) _H gauge theory							Intriligator, Seiberg Nucl.Phys.Proc.Sup	
SUSY QCD : $N_f = N_C + 1 \rightarrow \text{Confinement}$						pl.4	pl.45BC:1-28,1996	
$N_f=3, \ N_c=2$ Kanemura, Shindou, Yamada, Harnik, Kribs, Larson, Murayama, PRD86 055023 PRD70 015002								
UV picture Fundamental fields					IR picture	Composite fields		
Field	$SU(2)_L$	$U(1)_Y$	Z_2		Field	$SU(2)_L$	$U(1)_Y$	Z_2
$\left(\begin{array}{c}T_{1}\end{array}\right)$	0	0	1	MSSM	H_u	2	+1/2	+
$\left(\begin{array}{c}T_{2}\end{array}\right)$	2	0	+	doublets	H_d	2	-1/2	+
T_3	1	+1/2	+	Exotic fields $H \cdots \sim T \cdot T \cdot$	Φ_u	2	+1/2	_
T_4	1	-1/2	+		Φ_d	2	-1/2	_
T_5	1	+1/2			Ω^+	1	+1	_
T_6	1	-1/2			Ω-	1	-1	_
$ \begin{array}{c c} & & & \\ \hline \\ \hline$					N, N_{Φ}, N_{Ω}	1	0	+
I _i : SU(2) _H doublet					$\zeta,~\eta$	1	0	_

We introduce Z₂-symmetry and Z₂-odd RH-neutrino to realize radiative seesaw scenario.

In the Fat Higgs model, Hu, Hd and N are light. Other fields are decoupled by introducing additional fields.

Effective superpotential & Electroweak Baryogenesis

Two diagrams are naturally induced. All scalars contribute to neutrino mass.

Lepton Falvour Violation

Z₂-odd particles contribute to LFV processes.

Current experimental bounds

$$Br(\mu \to e\gamma) < 5.7 \times 10^{-13}$$
$$Br(\mu \to 3e) < 1.0 \times 10^{-12}$$

MEG:arXiv:1303.0754v2 [hep-ex] 23 Apr 2013 PDG, Phys. Rev. D**86**, 010001 (2012)

Multi-component dark matter

In general, there are three DM candidates, $(Z_2,R)^{(+,-)}, (-,+), (-,-).$ $\Omega_{DM}h^2 = \sum_i \Omega_{DM_i}h^2 \simeq 0.12$

In benchmark scenario, the lightest neutralino is not DM.

The lightest neutralino decay into RH-neutrino and RH-sneutrino.

$$m_{\chi^0} > m_{\tilde{\nu}_R} + m_{\nu_R}$$

RH-neutrino and RH-sneutrino are DM candidates.

Boltzmann-equation

Boltzmann-equation

Benchmark

Input parameters

λ , tan β , and μ -terms							
$\lambda = 1.8 \ (\Lambda_H = 5 \text{ TeV}) \ \tan \beta = 15 \ \mu = 250 \text{ GeV} \ \mu_{\Phi} = 550 \text{ GeV} \ \mu_{\Omega} = -550 \text{ GeV}$							
Z_2 -even Higgs sector							
$m_h = 126 \text{ GeV}$ $m_{H^{\pm}} = 990 \text{ GeV}$ $m_N^2 = (1050 \text{ GeV})^2$ $A_N = 2900 \text{ GeV}$							
Z_2 -odd Higgs sector							
$\bar{m}_{\Phi_u}^2 = \bar{m}_{\Omega}^2 = (175 \text{ GeV})^2 \bar{m}_{\Phi_d}^2 = \bar{m}_{\Omega_+}^2 = \bar{m}_{\zeta}^2 = (1500 \text{ GeV})^2 \bar{m}_{\eta}^2 = (2000 \text{ GeV})^2$							
$B_{\Phi} = B_{\Omega} = A_{\zeta} = A_{\eta} = A_{\Omega^+} = A_{\Omega^-} = m_{\zeta\eta}^2 = 0 B_{\zeta}^2 = (1400 \text{ GeV})^2 B_{\eta}^2 = (700 \text{ GeV})^2$							
RH neutrino and RH sneutrino sector							
$m_{\nu_R} = 63 \text{ GeV}$ $m_{\tilde{\nu}_R} = 65 \text{ GeV}$ $\kappa = 0.9$							
$y_N = (3.28i, 6.70i, 1.72i) \times 10^{-6}$ $h_N = (0, 0.227, 0.0204)$							
Other SUSY SM parameters							
$m_{\tilde{W}} = 500 \text{ GeV}$ $m_{\tilde{q}} = m_{\tilde{\ell}} = 5 \text{ TeV}$							

Benchmark

Output parameters

Non-decoupling effects							
$\varphi_c/T_c = 1.3 \lambda_{hhh}/\lambda_{hhh} _{\rm SM} = 1.2 {\rm B}(h \to \gamma \gamma)/{\rm B}(h \to \gamma \gamma) _{\rm SM} = 0.78$							
Neutrino masses and the mixing angles							
$(m_1, m_2, m_3) = (0, 0.0084 \text{ eV}, 0.0050 \text{ eV})$ $\sin^2 \theta_{12} = 0.32$ $\sin^2 \theta_{23} = 0.50$ $ \sin \theta_{13} = 0.14$							
LFV processes							
$B(\mu \to e\gamma) = 3.6 \times 10^{-13} B(\mu \to eee) = 5.6 \times 10^{-16}$							
Relic abundance of the DM							
$\Omega_{\nu_R} h^2 = 0.055 \Omega_{\tilde{\nu}_R} h^2 = 0.065 \Omega_{\rm DM} = \Omega_{\nu_R} h^2 + \Omega_{\tilde{\nu}_R} h^2 = 0.12$							

All experimental constrains are satisfied.

- Neutrino mass, mixing angles,
- Lepton flavour violation
- First order EWPT
- DM abundance

Collider Phenomenology

Collider Phenomenology

Collider Phenomenology

Z₂-odd particles characterize this model.

(A) Light Inert Doublet(B) Light Singlet-like Charged particle

(A) Light Inert Doublet Aoki, Kanemura, Yokoya, PLB725 (2013)

$$e^+e^- \to HA \to ZHH$$

$$e^+e^- \to H^+H^- \to W^+W^-HH$$

Mass can be determined with a few percent accuracy.

(B) Light Singlet-like Charged particle

$$e^+e^- \rightarrow \Omega^+\Omega^-, e^-e^- \rightarrow \Omega^-\Omega^-$$

Aoki, Kanemura, PLB689,28 Aoki, Kanemura, Seto, PRD80,033007

Summary

• We propose a UV complete model which can explain neutrino mass, dark matter and baryogensis with confinement.

Rich structure

Phenomenology

> Mass spectrum > Multi-component DM > Corrections to *hhh*, *hyy*, ...

Future works.