# Branching Ratios for Higgs to Di-jet Sates and WW-fusion Fraction @ 250 GeV

by Christian Drews 2014.06.21



#### Analysis of e+e- --> vvH

- cross section
  - left-handed: 129 fb @ 250 GeV
  - right-handed: 65 fb
  - P(-80, 30): 77.5 fb
- Missing mass Z-mass (91 GeV)
- Visible mass Higgs-mass (125 GeV)
- Main Background: ZZ --> vvqq, WW --> qvqv, Z --> qq
- Accuracies of Higgs branching fraction
  - B(H -> bb), B(H -> gg), B(H -> cc)
  - fitting b/c-tag 2D-Historam
- Measurement of T-channel,
   S-channel and Interverence





#### event selection

- finding cut range
- maximize significance program structure
  - while no change in siginificance
    - for cut in cut\_list
      - looking for cut limit with highest siginificance
      - -save cut limit

### optimisation on each final state

- the final states are different in
  - detector resulution
  - number of events
  - nature of jets



### optimisation on each final state

- the final states are different in
  - detector resulution
  - number of events
  - nature of jets
- maximize on  $N(\nu\nu H \rightarrow \nu\nu xx)$

 $\sqrt{N(\nu\nu H \to \nu\nu xx) + N(not[\nu\nu H \to dijet])}$ 

### Significance after optimising

• with WW-fusion

| optim on     | bb    | сс    | gg    | bb, cc, gg |
|--------------|-------|-------|-------|------------|
| Significance | 50.6  | 38.3  | 32    | 50.7       |
| Effi         | 0.347 | 0.137 | 0.111 | 0.367      |
| Purity       | 0.551 | 0.803 | 0.689 | 0.523      |
| Sig_bb       | 43.8  | 33.8  | 21.3  | 43.8       |
| Sig_cc       | 1.95  | 1.81  | 0.655 | 1.97       |
| Sig_gg       | 4.79  | 2.7   | 9.97  | 4.89       |

### cut limits

- gloun-events
  - sharper cuts on z and higgs r
     mass
  - no mouns
  - maximal PFO Momenten smaller
  - different event shape



| optim on        | bb    | СС    | gg    | bb, cc,<br>gg |
|-----------------|-------|-------|-------|---------------|
| npfos1>         | 20    | 14    | 30    | 20            |
| npfos2>         | 11    | 9     | 23    | 11            |
| maxPFOMomentum< | 40.5  | 42.5  | 26.5  | 40.5          |
| mass_z<         | 131.5 | 107.5 | 123.5 | 131.5         |
| mass_z>         | 81.5  | 82    | 83    | 79.5          |
| mass_higgs>     | 104.5 | 117   | 117.5 | 104.5         |
| mass_higgs<     | 132   | 129   | 130   | 132           |
| mom_t<          | 66.5  | 66.5  | 68    | 67.5          |
| mom_t>          | 25.5  | 34    | 21    | 21.5          |
| Abs(mom_z)<     | 55    | 49    | 57    | 55.5          |
| majthrust<      | 0.5   | 0.48  | 0.56  | 0.5           |
| pthrust>        | 0.8   | 0.83  | 0.64  | 0.77          |
| minthrust<      | 0.35  | 0.3   | 0.47  | 0.35          |
| minthrust>      | 0     | 0     | 0.09  | 0.03          |
| nmuon<          | 4     | 3     | 1     | 4             |
| y12>            | 0.29  | 0.285 | 0     | 0.29          |
| y12<            | 0.955 | 0.885 | 0.96  | 0.91          |
| yplus<          | 0.015 | 0.005 | 0.055 | 0.015         |
| majthrust>      | 0.08  | 0.15  | 0     | 0.08          |

### Fitting uncertainty

#### • with WW-fusion

| optim on | bb    | сс    | gg    | bb, cc, gg |
|----------|-------|-------|-------|------------|
| BG in %  | 3.26  | 15.2  | 10.5  | 3.08       |
| bb in %  | 1.78  | 2.62  | 3.45  | 1.8        |
| cc in %  | 26.07 | 25.18 | 40.49 | 26.69      |
| gg in %  | 12.99 | 37    | 9.08  | 14.41      |

#### scaled to old cross section

| optim on | bb    | сс    | gg    | bb, cc, gg |             |
|----------|-------|-------|-------|------------|-------------|
| BG       | 3.34  | 16.29 | 9.63  | 3.18       | Ono's study |
| bb       | 1.56  | 2.35  | 3.18  | 1.57       | 1.7         |
| СС       | 21.3  | 20.42 | 39.85 | 26.25      | 11.2        |
| gg       | 16.48 | 34.31 | 11.35 | 15.92      | 13.9        |

### Fitting uncertainty

#### • with WW-fusion

| optim on | bb    | сс    | gg    | bb, cc, gg |
|----------|-------|-------|-------|------------|
| BG in %  | 3.26  | 15.2  | 10.5  | 3.08       |
| bb in %  | 1.78  | 2.62  | 3.45  | 1.8        |
| cc in %  | 26.07 | 25.18 | 40.49 | 26.69      |
| gg in %  | 12.99 | 37    | 9.08  | 14.41      |

#### • TMVA with BDTG

| optim on | bb   | сс   | gg  | bb, cc, gg |
|----------|------|------|-----|------------|
| bb       | 1,75 |      |     | 1,73       |
| СС       |      | 18.6 |     | 22.8       |
| gg       |      |      | 6,3 | (BDT) 9.7  |

#### Fitting templates



Interverance depandent on CME



#### Interverance of ZH/WW in Z-mass



#### Detector resulution WW-fusion + interference



convolution is generated curve convoluted with gauss (width = 13 GeV)
gg and cc have better resolution as bb curve because neutrinos in jet

convolution shifted by 15 GeV - shape is not perfect but not bad ether

convoltion

#### Detector resulution only interference

convoltion



#### reconstructed interference looks to similar to Higgs-Strahlung

#### Fitting templates



### Plan

- Now writing bachelor thesis
- Look at overlay
  - Now overlay 0.2
    - What happens for overlay 0, 0.4
- other systematic errors
  - which and how?
- Deadline: 9<sup>th</sup> July
- Maybe figure something out for WW-Fusion

### Backup

### Interverance of ZH/WW in Z-mass

Recon.
 Z-mass
 cut
 Sig ~ 43











### Fitting uncertainty

#### • with WW-fusion

| optim on | bb    | сс    | gg     | bb, cc, gg | bb with WW |
|----------|-------|-------|--------|------------|------------|
| BG       | 3.14  | 12.84 | 9.69   | 3.07       | 3.12       |
| BG in %  | 3.14  | 12.84 | 9.69   | 3.07       | 3.12       |
| bb in %  | 1.82  | 2.65  | 3.53   | 1.79       | 1.78       |
| cc in %  | 26.43 | 25.14 | 210.32 | 19.35      | 30.44      |

#### • WW-fusion turned of

| optim on | bb    | сс    | gg    | bb, cc, gg | bb with WW |
|----------|-------|-------|-------|------------|------------|
| BG       | 3.26  | 15.12 | 10.38 | 3.27       | 3.13       |
| bb       | 1.8   | 2.6   | 3.64  | 1.77       | 1.8        |
| сс       | 20.03 | 30.81 | 143.4 | 19.95      | 21.81      |
| gg       | 15.43 | 18.44 | 11.57 | 16.74      | 13.73      |

# Fitting WW-fraction electron neutrinos mu/tau neutrinos



no cuts

no mpt cut

all cuts





Z-mass



no mpt cut

all cuts













#### Compare to Ono/Miyamoto's paper

| r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r                         |       |          |                       | vvH   | BG       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|----------|-----------------------|-------|----------|
| CM energy (GeV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 250                       | )     |          | Expected              | 19383 | 5.11E+08 |
| Cut names                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | condition                 | Sig.  | Bkg.     | isoLepCuts            | 17644 | 3.62E+08 |
| Generated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 19360 | 44827100 | npfo                  | 14677 | 1.92E+07 |
| Missing mass (GeV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $80 < M_{\rm mins} < 140$ | 15466 | 6214050  | E_vis                 | 13338 | 6.55E+06 |
| $\frac{1}{2} \prod_{i=1}^{n} \frac{1}{2} \prod_{i=1}^{n} \frac{1}$ | $00 < M_{miss} < 110$     | 19707 | 540240   | Z-Mass                | 12013 | 1.54E+06 |
| Transverse $P(\text{GeV})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $20 < P_T < 70$           | 13727 | 549340   | Higgs-mass            | 10977 | 321243   |
| Longitudinal $P$ (GeV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ P_L  < 60$              | 13342 | 392401   | missMo t              | 9807  | 54591    |
| # of charged tracks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $N_{chd} > 10$            | 12936 | 374877   | missMo <sup>_</sup> z | 9451  | 38490    |
| Maximum $P$ (GeV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $P_{max} < 30$            | 11743 | 205038   | majthrust             | 8369  | 24327    |
| $Y_{23}$ value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $Y_{23} < 0.02$           | 7775  | 74439    | pthrust               | 7598  | 20220    |
| $Y_{12}$ value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.2 < Y_{12} < 0.8$      | 7438  | 62584    | minthrust             | 7590  | 20171    |
| Di-jet mass (GeV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $100 < M_{jj} < 130$      | 6691  | 19061    | maxPFOMo              |       |          |
| Likelihood ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LR > 0.165                | 6293  | 10940    | m                     | 7450  | 18586    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $a/\sqrt{a+p}$            | 47.0  | (00 507) | y-Cuts                | 4994  | 4407     |
| Significance (Efficiency)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $S/\sqrt{S+B}$            | 47.9  | (32.5%)  |                       | 51,5  | (25,7 %) |

#### evis



#### optimizing cuts for each mode

|                 | bb    | сс    | gg    | bb, cc, gg | bb with WW | WW-Reconst |
|-----------------|-------|-------|-------|------------|------------|------------|
| npfos1>         | 14    | 12    | 27    | 12         | 12         | 6          |
| npfos2>         | 12    | 9     | 24    | 12         | 13         | 20         |
| evis<           | 147   | 144.5 | 145   | 146.5      | 147        | 144        |
| evis>           | 0     | 0     | 127   | 0          | 0          | 115        |
| maxPFOMoment    |       |       |       |            |            |            |
| um<             | 37.5  | 42.5  | 39    | 38         | 36         | 59.5       |
| mz<             | 131.5 | 107.5 | 113.5 | 131.5      | 131.5      | 0.99       |
| mz>             | 82    | 84    | 83    | 82         | 79.5       | 0.96       |
| mh>             | 104.5 | 117   | 117.5 | 104.5      | 106        | 117        |
| mh<             | 132   | 129   | 130   | 132        | 132        | 129.5      |
| mpt<            | 66    | 66.5  | 66    | 66         | 67.5       |            |
| mpt>            | 25.5  | 34    | 27    | 25.5       | 25.5       |            |
| TMath::Abs(mpz  |       |       |       |            |            |            |
| )<              | 53.5  | 49    | 55.5  | 53.5       | 53         |            |
| TMath::Abs(cosh |       |       |       |            |            |            |
| )<              | 1     | 1     | 1     | 1          | 1          |            |
| majthrust<      | 0.49  | 0.48  | 0.56  | 0.49       | 0.5        | 0.49       |
| pthrust>        | 0.8   | 0.83  | 0.63  | 0.8        | 0.8        | 0.76       |
| pthrust<        | 0.99  | 0.98  | 0.98  | 0.995      | 0.99       | 0.955      |
| minthrust<      | 0.3   | 0.3   | 0.47  | 0.3        | 0.35       | 0.33       |
| minthrust>      | 0     | 0     | 0.07  | 0          | 0.03       | 0.03       |
| nmuon<          | 4     | 3     | 1     | 4          | 4          | 2          |
| y12>            | 0.29  | 0.295 | 0     | 0.29       | 0.29       | 0.28       |
| y12<            | 0.925 | 0.885 | 0.86  | 0.925      | 0.935      | 0.91       |
| yplus<          | 0.015 | 0.005 | 0.05  | 0.015      | 0.015      | 0.03       |
| majthrust>      | 0.08  | 0.15  | 0     | 0.08       | 0.08       | 0.15       |

h -> bb only (direct cut on b-tag)

|              | Claude Düring | my Analysis |
|--------------|---------------|-------------|
| Signifficans | 51.6          | 68.2        |
| Efficency    | 31.2 %        | 62.7 %      |
| Purity       | 87.7 %        | 65.2 %      |

#### • H -> bb, cc, gg

|              | Ono/Miyamoto | my Analysis |
|--------------|--------------|-------------|
| Signifficans | 47.9         | 51.8        |
| Efficency    | 32.5         | 24,4 %      |
| Purity       | 36.5         | 56,7 %      |

### Fitting uncertainty

#### • with WW-fusion

| optim on     | bb    | СС    | gg     | bb, cc, gg | bb with WW |
|--------------|-------|-------|--------|------------|------------|
| BG in %      | 3.14  | 12.84 | 9.69   | 3.07       | 3.12       |
| bb in %      | 1.82  | 2.65  | 3.53   | 1.79       | 1.78       |
| cc in %      | 26.43 | 25.14 | 210.32 | 19.35      | 30.44      |
| gg in %      | 17.91 | 37.08 | 11.77  | 19.67      | 18.7       |
| Significance | 50.2  | 37.9  | 34.9   | 50.2       | 50.4       |
| Efficiency   | 0.347 | 0.134 | 0.116  | 0.348      | 0.339      |
| Purity       | 0.543 | 0.802 | 0.784  | 0.54       | 0.561      |
| Sig_b        | 45.3  | 35.1  | 27.9   | 45.2       | 45.4       |
| Sig_c        | 2.92  | 3.68  | 1.58   | 2.92       | 2.87       |
| Sig_g        | 6.42  | 5.25  | 14.8   | 6.38       | 6.83       |

#### Cut table (cuts taken at last)

| 0                    | vvh(Si<br>g) | vvh(ot<br>her) | znunu<br>_sl | sw_sl | zz_sl | ww_sl | szee_sl | z_h   | ww_h | zz_h | zzw<br>w_h | lepton<br>ic | higgs | aa_bg | Signifi               | Purity     | Eff   |
|----------------------|--------------|----------------|--------------|-------|-------|-------|---------|-------|------|------|------------|--------------|-------|-------|-----------------------|------------|-------|
| allcuts              | 4660         | 67.9           | 490          | 80.5  | 736   | 1810  | 0       | 443   | 0    | 0    | 0          | 0.206        | 39.4  | 364   | 50                    | 0.536      | 0.348 |
| npfo                 | 4880         | 84.9           | 591          | 110   | 896   | 2340  | 0       | 530   | 0    | 0    | 0          | 688          | 44.1  | 458   | 47.3                  | 0.459      | 0.365 |
| E_vis                | 4660         | 67.9           | 490          | 80.5  | 736   | 1810  | 0       | 443   | 0    | 0    | 0          | 0.206        | 39.4  | 364   | . 50                  | 0.536      | 0.348 |
| Z-<br>Mass<br>Higgs- | 4770         | 69.4           | 518          | 90    | 757   | 2090  | 0       | 476   | 0    | 0    | 0          | 0.206        | 40.5  | 397   | 49.7                  | 0.518      | 0.357 |
| mass                 | 4970         | 77.8           | 1300         | 125   | 1390  | 2770  | 0       | 897   | 0    | 0    | 0          | 3.68         | 57.9  | 996   | 44.3                  | 0.395      | 0.372 |
| missM<br>o_t         | 5190         | 75             | 618          | 96.2  | 1010  | 2500  | 1.2     | 11000 | 2.02 | 1.89 | 1.69       | 42           | 46.2  | 10500 | 14.6                  | 0.041<br>2 | 0.388 |
| missM<br>0_z         | 4810         | 70.3           | 547          | 87.4  | 858   | 2180  | 0       | 573   | 0    | 0    | 0          | 0.206        | 40.3  | 388   | 49.2                  | 0.503      | 0.36  |
| cosTHi<br>ggs        | 4660         | 67.9           | 490          | 80.5  | 736   | 1810  | 0       | 443   | 0    | 0    | 0          | 0.206        | 39.4  | 364   | . 50                  | 0.536      | 0.348 |
| nmou<br>n            | 4660         | 67.9           | 490          | 80.5  | 736   | 1810  | 0       | 443   | 0    | 0    | 0          | 0.206        | 39.4  | 364   | . 50                  | 0.536      | 0.348 |
| majthr<br>ust        | 4720         | 70             | 543          | 86.5  | 811   | 1890  | 0       | 476   | 0    | 0    | 0          | 0.206        | 44.7  | 385   | 49.7                  | 0.523      | 0.353 |
| pthrus<br>t          | 4690         | 75.8           | 503          | 82.1  | 753   | 1840  | 0       | 443   | 0    | 0    | 0          | 0.206        | 41.1  | . 371 | . 50                  | 0.533      | 0.35  |
| maxPF<br>OMo<br>m    | 4810         | 71             | 542          | 96.7  | 832   | 2200  | 0       | 476   | 0    | 0    | 0          | 12 1         | 41 5  | 410   | 0 <u>4</u> 9 <u>4</u> | 0 507      | 0 36  |
| minthr<br>ust        | 4660         | 67.9           | 490          | 80.5  | 736   | 1810  | 0       | 443   | 0    | 0    |            | 0.206        | 39.4  | 364   | 50                    | 0.536      | 0.348 |
| y-Cuts               | 6070         | 357            | 912          | 336   | 1390  | 8840  | 0       | 601   | 0    | 0    | 0          | 4.39         | 99.9  | 880   | 43.5                  | 0.311      | 0.454 |

#### **Comparing fitting result**

|         |            | $\mathbf{X} = \mathbf{x}_1 + \mathbf{x}_2$ |            | $X = x_1^* x_2 / (x_1^* x_2 + (1 - x_1)(1 - x_2))$ |             |            |  |  |  |
|---------|------------|--------------------------------------------|------------|----------------------------------------------------|-------------|------------|--|--|--|
|         | Reconst. N | abso.<br>Error                             | rel. Error | Reconst. N                                         | abso. Error | rel. Error |  |  |  |
| numBack | 6290.00    | 103.00                                     | 2 %        | 6523.30                                            | 141.00      | 2 %        |  |  |  |
| bb      | 4080.70    | 70.20                                      | 2 %        | 4089.20                                            | 74.30       | 2 %        |  |  |  |
| сс      | 162.38     | 24.10                                      | 15 %       | 193.78                                             | 50.70       | 26 %       |  |  |  |
| gg      | 582.03     | 58.20                                      | 10 %       | 410.78                                             | 77.10       | 19 %       |  |  |  |

TABLE IV: Summary of template fitting results  $r_s$  and accuracies of  $(\sigma \cdot Br)$  and Br after correcting  $\sigma$  for

| an accuracy of 2.5% at $$ | $\sqrt{s} = 250 \text{ GeV}$ | assuming $\mathcal{L} = 250 \text{ fb}^{-1}$ | with $(e$ | $e^{-}, e^{+}) =$ | (-0.8, +0.3). |
|---------------------------|------------------------------|----------------------------------------------|-----------|-------------------|---------------|
|---------------------------|------------------------------|----------------------------------------------|-----------|-------------------|---------------|

|                                                                               | $ u \bar{ u} H$   | $q\bar{q}H$       | $e^+e^-H$         | $\mu^+\mu^-H$     | comb.             |
|-------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| $r_{bar{b}}$                                                                  | $1.00 {\pm} 0.02$ | $1.00{\pm}0.01$   | $1.00 {\pm} 0.04$ | $1.00 {\pm} 0.03$ | $1.00 {\pm} 0.01$ |
| $r_{c\bar{c}}$                                                                | $1.02 {\pm} 0.11$ | $1.01 {\pm} 0.10$ | $1.02{\pm}0.27$   | $1.01 {\pm} 0.23$ | $1.02 {\pm} 0.07$ |
| $r_{gg}$                                                                      | $1.02 \pm 0.14$   | $1.02 {\pm} 0.13$ | $1.05 {\pm} 0.33$ | $1.02 \pm 0.24$   | $1.02 {\pm} 0.09$ |
| $\frac{\Delta(\sigma \cdot Br)}{\sigma \cdot Br} (H \to b\bar{b}) \ (\%)$     | 1.7               | 1.5               | 3.8               | 3.3               | 1.0               |
| $\frac{\Delta(\sigma \cdot Br)}{\sigma \cdot Br} (H \to c\bar{c}) \ (\%)$     | 11.2              | 10.2              | 26.8              | 22.6              | 6.9               |
| $\overline{\frac{\Delta(\sigma \cdot Br)}{\sigma \cdot Br}(H \to gg) \ (\%)}$ | 13.9              | 13.1              | 31.3              | 33.0              | 8.5               |
| $\frac{\Delta Br}{Br}(H \to b\bar{b}) \ (\%)$                                 | 3.0               | 2.9               | 5.7               | 4.5               | 2.7               |
| $\frac{\Delta Br}{Br}(H \to c\bar{c}) \ (\%)$                                 | 11.4              | 10.5              | 31.3              | 22.8              | 7.3               |
| $\frac{\Delta Br}{Br}(H \to gg) \ (\%)$                                       | 14.2              | 13.3              | 33.1              | 24.0              | 8.9               |

#### Compare to Claude Düring's study

| Process                                | expected              | pre-selection          | Cut1                | Cut2   | Cut3   | Cut4  | Cut5  | Cut6 | Cut7 | Cut8 |
|----------------------------------------|-----------------------|------------------------|---------------------|--------|--------|-------|-------|------|------|------|
| $ u \bar{ u} H(	ext{fusion})$          | 3426                  | 2663                   | 2070                | 2023   | 1577   | 1053  | 965   | 547  | 519  | 507  |
| $ u ar{ u} H(ZH)$                      | $1.4 \times 10^{4}$   | 10918                  | 8356                | 8356   | 7448   | 4860  | 4594  | 2574 | 2546 | 2546 |
| $\nu_l \bar{\nu}_l b \bar{b}$          | $3.05 \times 10^{4}$  | 23012                  | 1040                | 1040   | 878    | 421   | 390   | 224  | 193  | 187  |
| $ u_l \overline{\nu}_l q \overline{q}$ | $1.19 \times 10^{5}$  | 88998                  | 5548                | 5545   | 4714   | 2408  | 2271  | 15   | 9    | 9    |
| $qar{q}l^+l^-$                         | $2.99 	imes 10^5$     | 153540                 | 6196                | 5922   | 1760   | 588   | 508   | 65   | 38   | 36   |
| $qar{q}l u$                            | $1.73 \times 10^{6}$  | $1.15 \times 10^{6}$   | 181973              | 177193 | 134047 | 22654 | 20533 | 111  | 73   | 65   |
| $q \bar{q} q \bar{q}$                  | $3.91 \times 10^{6}$  | $1.15 \times 10^{6}$   | 782                 | 728    | 3      | 1     | 0     | 0    | 0    | 0    |
| $qar{q}$                               | $26.02 \times 10^{6}$ | $17.27 \times 10^{6}$  | 852321              | 794892 | 1507   | 1199  | 683   | 289  | 152  | 152  |
| BG                                     | $32.104 \times 10^6$  | $19.846 \times 10^{6}$ | $1.047 \times 10^6$ | 985320 | 142909 | 27271 | 24385 | 1404 | 465  | 449  |

|             |          | isoLepCut |          |          |          | Higgs-   | missMo_  | missMo_  | cosTHigg |       |          |
|-------------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|-------|----------|
|             | Expected | S         | npfo     | E_vis    | Z-Mass   | mass     | t        | z        | S        | B-Tag | all cuts |
| vvH(fusion) | 3960     | 3610      | 3280     | 2890     | 2570     | 2410     | 1970     | 1830     | 1830     | 1240  | 1170     |
| vvH(ZH)     | 1.54E+04 | 1.54E+04  | 1.54E+04 | 1.54E+04 | 1.54E+04 | 1.54E+04 | 9970     | 9890     | 9880     | 6530  | 6250     |
| vvbb        | 3.31E+04 | 3.31E+04  | 3.31E+04 | 3.31E+04 | 3.31E+04 | 3.31E+04 | 2630     | 2160     | 2150     | 2020  | 1570     |
| vvqq        | 1.26E+05 | 1.26E+05  | 3.31E+04 | 3.31E+04 | 3.31E+04 | 3.31E+04 | 3.31E+04 | 9420     | 9420     | 104   | 54.8     |
| qqll        | 2.18E+05 | 2.18E+05  | 2.18E+05 | 18700    | 7630     | 3900     | 1380     | 1140     | 1140     | 394   | 251      |
| qqlv        | 4.22E+06 | 4.22E+06  | 4.22E+06 | 4.22E+06 | 4.22E+06 | 4.22E+06 | 4.22E+06 | 4.22E+06 | 4.22E+06 | 1190  | 677      |
| qqqq        | 4.20E+06 | 4.20E+06  | 4.20E+06 | 486      | 331      | 217      | 5.6      | 5.6      | 5.6      | 0.717 | 0.132    |
| qq          | 1.95E+07 | 1.95E+07  | 1.95E+07 | 1.95E+07 | 1.95E+07 | 1.95E+07 | 3550     | 2470     | 2450     | 1710  | 1510     |

- qqll before zz\_sl + zee\_sl (now only to l+l-)
- qqlv before only sw\_sl (now + ww\_sl)

#### How I decided on cuts





c-tag

4 -0.2 0 0.2

c-tag

# Fitting WW-fraction electron neutrinos mu/tau neutrinos



no cuts

no mpt cut

all cuts





Z-mass



no mpt cut

all cuts

