$h \rightarrow \tau^+ \tau^-$ BR Study Some Updates

Shin-ichi Kawada (Hiroshima University)

Review: Numbers in 36th GM

$\frac{\text{Signi.}}{(\sigma \times \text{BR})}$	vvh	qqh	e+e-h	$\mu^+\mu^-h$
Cut-based	11.7 <i>σ</i>	20.5 <i>σ</i>	3.2 <i>σ</i>	5.0 <i>σ</i>
	8.5%	4.9%	31.3%	20.0%
TMVA	13.6σ	21.2 <i>σ</i>	3.2 <i>σ</i>	5.7 <i>σ</i>
	7.4%	4.7%	31.2%	17.6%

Analysis @ ILC500, 500fb⁻¹, left beam pol. used all available TDR samples + aa_2f (SGV) samples

Review: Next Steps in 36th GM

- 500 GeV
 - check more optimization including tau finder study
 - separation of Zh and $v\overline{\nu}h$
- 250 GeV (not started)
- Write a paper & PhD thesis

Some Updates

- 500 GeV $\nu \bar{\nu} h$ (today's talk)
 - tau finder & kT clustering
 - more optimization (TMVA)
- 250 GeV: first (practice) results
- Separation: now stopping...
- Write a paper: need discussion among collaborators
- PhD thesis: just wrote a little

500 GeV $v\bar{v}h$

- tau finder & kT clustering study
- more optimization

Reconstruction for 500 GeV $v\bar{v}h$

kT clustering (previous: R = 1.0) to remove beam-induced objects

Tau Finder for $v\bar{v}h$

- 1. Search most energetic charged track
- 2. Combine neighboring particles to 1. with satisfying $m_{\rm combine} < 2 {\rm ~GeV}$
- 3. Repeat 1. and 2. until there are no charged tracks

• Most energetic τ^+ and τ^- are combined as a Higgs boson.

MC Matching

 Tau finder performance depends on the kT clustering, so I checked tau finder performance by using MC matching as a function of R-value of kT clustering.

MC Matching Results

# of PFOs	R = 0.5		R = 1.0	
	ОК	not	ОК	not
τ^- charged	18296	501	18164	1083
$ au^-$ neutral	20935	1099	21066	2258
τ^+ charged	18449	479	18257	978
$ au^+$ neutral	20989	1210	21063	2337

better tau reconstruction in R = 0.5 than R = 1.0 ---> analysis with R = 0.5

checked for R = 0.5 - 1.4, <u>every 0.1</u> picked up only 0.5 and 1.0 $\tau^{-(+)}$: reconstructed energetic tau-(+) OK = particle in tau is come from Higgs not = particle in tau is NOT come from Higgs (mis-combined)

(Single) TMVA Analysis

not trained for other backgrounds

Results

R = 1.0Cut-basedsingle TMVAdouble TMVAdouble TMVAfirst: aa_2ffirst: except aa_2f 11.7σ 13.6σ 14.0σ

R = 0.5

Cut-based	single TMVA	double TMVA first: aa_2f	double TMVA first: except aa_2f
12.0σ	13.3σ	13.9σ	14.7σ

Double TMVA method looks useful

Summary

- I checked tau finder performance in 500 GeV $v\bar{v}h$ as a function of R of kT clustering.
 - At least, mis-combine probability is lower in R = 0.5 than R = 1.0.
- Double TMVA analysis in 500 GeV $v\bar{v}h$ looks useful for improvement.

Current Numbers

I put best value.

$\frac{\text{Signi.}}{(\sigma \times \text{BR})}$	vvh	qqh	e+e-h	$\mu^+\mu^-h$
Cut-based	12.0 <i>σ</i>	20.5 <i>σ</i>	3.2 <i>σ</i>	5.0 <i>σ</i>
	8.4 %	4.9%	31.3%	20.0%
TMVA	14.7 <i>σ</i>	21.2 <i>σ</i>	3.2 <i>σ</i>	5.7 <i>σ</i>
	6.8 %	4.7%	31.2%	17.6%

Analysis @ ILC500, 500fb⁻¹, left beam pol. used all available TDR samples + aa_2f (SGV) samples

LumiUP case

Signi. $\Delta(\sigma \times BR)$ $(\sigma \times BR)$	vvh	qqh	e+e-h	$\mu^+\mu^-h$
Cut-based	21.4 <i>σ</i>	36.6σ	5.66σ	8.9 <i>σ</i>
	4.7%	2.7%	17.7%	11.2%
TMVA	26.3 <i>σ</i>	38.0σ	5.73σ	10.2 <i>σ</i>
	3.8%	2.6%	17.4%	9.8%

Analysis @ ILC500, 1600fb⁻¹(simple stat. scaling), left beam pol.

250 GeV Study, $M_h = 125$ GeV

Signi. $\Delta(\sigma \times BR)$ $(\sigma \times BR)$	qqh	<i>qqh</i> LumiUP	e+e-h	$\mu^+\mu^-h$
Cut-based	22.6σ	48.4σ	σ	σ
	4.4%	2.1%	%	%
TMVA	23.5 <i>σ</i>	50.4σ	σ	σ
	4.3%	2.0%	%	%

Analysis @ ILC250, 250fb⁻¹/1150fb⁻¹(simple stat. scaling), left beam pol., used all available TDR samples

Task List

- Finalize 500 GeV analysis, including tau finder optimization
- Consider the separation of Zh and $v\bar{v}h$ in 500 GeV
- 250 GeV analysis with new signal samples (tau pol. included properly), and finalize
- Write a paper

– need discussion among collaborators: NEXT WEEK

• Write my PhD thesis