tth study @ \sqrt{s} = 500 GeV

The 37th general meeting of the ILC physics working group June 21 2014

Yuji Sudo (Kyushu University)

Remainder

- signal: tth→8 jets (h→bb)
 tth→ln+6jets (h→bb)
- background: ttZ, ttg(g \rightarrow bb), tbW

Results at last meeting

- Mh = 125 GeV
- $\sqrt{s} = 500 \text{ GeV}$, L = 1000 fb⁻¹
- tth \rightarrow 8jets S/ $\sqrt{S+B}$ = 3.16
- tth \rightarrow In+6jets S/ $\sqrt{S+B}$ = 3.45
- combine \rightarrow significance = 4.67 $|\Delta g_t/g_t| = 10.6\%$

update

- analysis @ L = 500/1600 fb⁻¹
- overlay low Pt beam background
- apply Kt clustering to remove low Pt background

Results at AWLC

- direct top Yukawa coupling measurement
- $\sqrt{s} = 500 \text{ GeV}$ ILC, L = 500 fb⁻¹, Mh = 125 GeV
- interference term is negligible
- cut based event selection and counting analysis
- target signal: tth→4q+4b, lv+2q+4b
- backgrounds: ttZ, ttg, tbW
- tth \rightarrow 8jets S/ $\sqrt{S+B}$ = 2.04
- tth \rightarrow In+6jets S/ $\sqrt{S+B}$ = 2.42
- combined result significance = 3.16

 $\rightarrow |\Delta g_t/g_t| = 15.7\%$

- In the cases of lumi-up(L=1600fb⁻¹) or \sqrt{s} = 520 GeV, significance reaches 5 (* overlay low Pt background)
- (* Kt clustering was not applied) next steps
- estimate systematic uncertainties
- use MVA
- Improve Lepton ID method

Events / 5 Ge\

Number of

0.

apply Kt clustering

• We apply Kt clustering to remove low Pt jets related to beam

$\cos\theta$ distribution

Kt clustering works to remove PFOs with large cosθ

Beam background in reconstructed Jets

trace PFOs and MC truth information from reconstructed jets

• Kt clustering works well (not perfect) to remove beam background

signal acceptance (tth \rightarrow 8jet)

* Cut parameters are optimized for each analysis

with Kt clustering

Acceptance table (%)				
requirement	Number of Events			
noCut	100			
nolsoLep	92.5			
8jetReq	87.2			
4bjetReq	49.56			
absCosThetaLT0	.99 <mark>48.8</mark>			
chi2 cut	39.0			
hcandMjj>80	34.9			
jet01EnergySum	28.0			
jet567EnergySu	m 28.0			
Mtop>140	26.1			

without Kt cluster	ing (result at AWLC)			
Acceptance table	(%)			
requirement Number of Events				
noCut	100			
nolsoLep	92.4			
8jetReq	82.5			
4bjetReq	47.9			
absCosThetaLT0.9	9 38.0			
chi2 cut	26.9			
hcandMjj>80	25.0			
jet01EnergySum	23.5			
jet567EnergySum	21.1			
Mtop>140	20.7			

signal acceptance is increased ~4.4%.
 (before selection of Mh range)

Backup

reconstructed mass – MC

reconstructed mass : using jets matched to MC MC: MC truth – ν

ex 9, N matched = 710 (/2500) ex 8, N matched = 680 (/2500)

Introduction

- We can directory measure the top quark Yukawa coupling via tth channel with \sqrt{s} = 500 GeV ILC.
- Previous tth analysis was performed assuming Mh = 120GeV.
- (R. Yonamine et al., PHYSICAL REVIEW D 84, 014033(2011))
- Higgs boson mass is ~125 GeV.
- We are working on tth study assuming Mh=125 GeV.
- ILD full simulation

Signal and Background

ttbar cross section is increased around ttbar threshold by ttbar bound-state effect

- tth cross section is enhanced
- ttZ cross section is also increased

Signals

- tth→8jets (h→bb) tth→ln+6jets (h→bb)
 Main Backgrounds
- ttZ, ttg(bb), tbW

expected # of events @ 500fb⁻¹

- $\sqrt{s} = 500 \text{ GeV}$, Mh = 125 GeV, (Pe⁻, Pe⁺)=(-0.8, +0.3)
- production cross section

• Branching ratio

Process	σ (fb)	Decay mode	Branching ratio	
e⁻e⁺ → tth	0.485	h→bb	0.577	
$a^{-}a^{+} \rightarrow \pm \pm 7$	 > ttZ > ttZ 1.974 	tt→bqqbqq	0.457	
		tt→blvbqq	0.438	
e⁻e⁺ → ttg(bb)	1.058	tt→blvblv	0.105	
e⁻e⁺ → tbW	979.8			

expected # of signals and Backgrounds(@500fb⁻¹)

tth(tt6j, hbb)	63.9	tth(ttln4j,hbb)	61.3
tth(ttall, hnobb)	102.6	ttZ	987
tth(ttlvlv2j, hbb)	14.6	ttg(bb)	529
		tbW	489902

tth→8jets(In+6jets) analysis

- interference term is negligible
- counting analysis with cut based event selection

In this analysis, higgs decays into two b jets

- 4 b jets out of 8(6) jets
- No (one) isolated lepton

Event Selection

- signal topology
- ✓ Y cut (6, 8 jet event)
- ✓ No(one Isolated Lepton)
- ✓ B jet candidate ≥ 4
- detector acceptance $|\text{Jet } \cos \theta| \le 0.99$
- jet pairing
- ✓ $\chi 2 ≤ 9.5$ (34.5)

- kinematics
- ✓ Leading 2 Jet Energy Sum
- ✓ Lowest 3 Jet Energy Sum (for 8jets mode) (Lowest 2 Jet Energy Sum (for 6jets mode))
- Missing momentum > 20 GeV (for 6jtes mode)
- reconstructed mass
- ✓ top candidate Mjjj ≥ 140 GeV
- ✓ higgs candidate Mjj ≥ 80 GeV
- ✓ 95GeV ≤ h candidate Mjj ≤ 165(175)GeV

Significance (tth \rightarrow 8jets)

- baseline
- $\sqrt{s} = 500 \text{ GeV}, 500 \text{ fb}^{-1}$
- Cut base + counting analysis
- Nsig/ $\sqrt{\text{Nsig} + \text{Nbkgd}} = \underline{2.04}$,
- |∆g_t/g_t |~ 24.5%

- lumi-up
- $\sqrt{s} = 500 \text{ GeV}$, 1600 fb⁻¹
- Cut base + counting analysis
- $Nsig/\sqrt{Nsig + Nbkgd} = 3.67$,
- $|\Delta g_t/g_t| \sim 13.6\%$

Significance (tth \rightarrow In+6jets)

- baseline
- $\sqrt{s} = 500 \text{ GeV}, 500 \text{ fb}^{-1}$
- Cut base + counting analysis
- Nsig/ $\sqrt{\text{Nsig} + \text{Nbkgd}} = \frac{2.42}{2.42}$,
- |∆g_t/g_t |~ 20.7%

- lumi-up
- $\sqrt{s} = 500 \text{ GeV}, 1600 \text{ fb}^{-1}$
- Cut base + counting analysis
- $Nsig/\sqrt{Nsig + Nbkgd} = 4.33$,
- |Δg_t/g_t |~ 11.5%

Rough estimation of significance and $|\Delta g_t/g_t|$ $\sqrt{s} = 480-610 \text{ GeV}$, 500 fb⁻¹ 8 jets & ln6jtes combined result

√s 490 500	: <i>S/√S</i> + : 2.06 : 3.16	B : Δg _t /g _t % : 24.2 : 15.7
510	: 4.19	: 11.9
520 530	: 5.12 · 5.96	: 9.76 · 8.38
540	: 6.70	: 7.45
550	: 7.33	:6.81

cross section (fb)

\sqrt{S}	: tth(tota	al) : ttz	: ttbb	: tbw
490	: 0.272	: 1.569	: 1.009	: 991.1
500	: 0.485	: 1.974	: 1.058	: 979.8
510	: 0.725	: 2.373	: 1.105	: 967.0
520	: 0.981	: 2.753	: 1.151	: 953.5
530	: 1.244	: 3.118	: 1.199	: 939.4
540	: 1.504	: 3.469	: 1.243	: 924.5
550	: 1.743	: 3.806	: 1.285	: 909.5

event selection table, $\sqrt{s} = 500$ GeV, 500 fb⁻¹

8 jets

Selection	$t\bar{t}h(t\bar{t}6j \ hbb)$	$t\bar{t}h(t\bar{t}all\ hnobb)$	$t\bar{t}h(t\bar{t}ln4j\ hbb)$	$t\bar{t}h(t\bar{t}2l2n2j\ hbb)$	$t\bar{t}Z$	$t\bar{t}g^{*}(bb)$	tbW
No Cut	63.9	102.6	61.3	14.6	987.3	529.3	489902.1
No Isolated Lepton	59.1	48.0	8.3	0.34	517.8	308.2	291330.0
Y cut for 8 jets	52.7	42.8	4.3	0.05	354.0	174.5	51265.1
b jet candidate ≥ 4	30.6	1.1	2.5	0.03	43.1	78.7	941.5
$ \text{Jet } \cos \theta \le 0.99$	24.3	0.8	1.5	0.01	32.6	56.6	390.8
$\chi^{2} \le 9.5$	17.2	0.4	0.4	0	20.5	21.5	99.7
h Candidate $M_{jj} \ge 80$ (GeV)	16.0	0.3	0.2	0	17.2	12.1	47.9
Leading 2 JetEnergySum $< 208 \text{ GeV}$	15.0	0.3	0.2	0	15.9	8.0	29.7
Lowest 3 JetEnergySum $> 104 \text{ GeV}$	13.5	0.3	0.1	0	13.1	5.8	14.3
$M_{\rm top} \ge 140 \; ({\rm GeV})$	13.2	0.3	0.1	0	12.6	5.3	10.2
$95 \le h$ Candidate $M_{jj} \le 165$ (GeV)	11.5	0.2	0.1	0	9.0	3.7	7.4

In+6jets

Selection	$t\bar{t}h(t\bar{t}ln4j\ hbb)$	$t\bar{t}h(t\bar{t}all\ hnobb)$	$t\bar{t}h(t\bar{t}6j\ hbb)$	$t\bar{t}h(t\bar{t}2l2n2j\ hbb)$	$t\bar{t}Z$	$t\bar{t}g^{*}(bb)$	tbW
No Cut	61.3	102.6	63.9	14.6	987.3	529.3	
One Isolated Lepton	50.2	38.6	4.7	3.0	344.4	188.6	
Ycut (6 jets)	49.9	38.4	4.7	2.4	314.3	175.6	
b jet candidate ≥ 4	27.0	0.8	2.3	1.3	29.3	64.0	
$ \operatorname{Jet}\cos\theta \le 0.99$	23.2	0.7	2.1	0.8	24.0	50.2	
Missing $P > 20$	22.9	0.6	0.8	0.8	22.3	46.1	
$\chi^{2} \le 34.5$	21.8	0.5	0.6	0.5	21.0	40.1	
h Candidate $M_{jj} \ge 80$ (GeV)	18.9	0.4	0.5	0.3	16.3	17.2	
Leading 2 JetEnergySum $< 195 \text{ GeV}$	15.8	0.3	0.1	0.3	11.8	8.1	
lowest 2 JetEnergySum $> 66 \text{ GeV}$	14.5	0.3	0.1	0.1	9.8	4.0	
$M_{\rm top} \ge 140 \; ({\rm GeV})$	13.3	0.3	0.07	0.1	8.3	3.1	
$95 \le h$ Candidate $M_{jj} \le 175$ (GeV)	11.9	0.3	0.06	0.05	5.9	2.2	3.9