Model Dependence Error in Hadronic Recoil ZH Cross Section

Tim Barklow (SLAC) June 26, 2014 Mark Thomson's analysis of $\sigma(ZH)$ with $Z \rightarrow q\overline{q}$ uses two measurements to obtain the cross section: $\sigma(ZH) = \sigma(ZH) \cdot BR(visible) + \sigma(ZH) \cdot BR(invisible)$

σ	(ZH	1)•E	BR(v	<i>isib</i>	le)	σ (ZH)•BR(invisible)				
		Fin	al(?)) Re	sults	BDT Selection				
Process	σ/fb	$\varepsilon_{\rm presel}$	$\mathcal{E}_{\mathscr{L}>0.70}$	<i>N£</i> >0.70	★ For optimal cut	 Preliminary results (7 variable BDT selection) 				
qq qq]v qqqq qq]l qq]l qqvv Hv _e v _e	25180 5914 5847 1704 325	0.5 % 6.4 % 4.2 % 1.2 % 0.6 % - %	<0.1 % 0.1 % 0.4 % 0.1 % <0.1 %	6211 3895 10818 1218 35	 signal ~9.5k events background ~ 19k events 15 % improvement c.f. LCWS analysis 	$ \begin{array}{c} \underset{M}{\overset{\text{Signal}}}{\overset{Signal}}{\overset{Signal}}\overset{Signal}}{\overset{Signal}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	Signal el Efficiency qq invis. 20.7 % Backgrounds			
HZ	93.4	44.0%	20.3 %	9493		Efficiency Ev	ann			
$H \rightarrow invis.$ $H \rightarrow q\overline{q}/gg$ $H \rightarrow WW^*$		0.6 % 43.5 % 44.7 %	<0.1 % 20.6 % 19.5 %	6211 2240	Efficiencies same to ~10 % !!!	0.4 -0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2	4 2414			
$\begin{array}{l} H \rightarrow ZZ^{*} \\ H \rightarrow \tau^{+}\tau^{-} \\ H \rightarrow \gamma\gamma \\ H \rightarrow Z\gamma \\ H \rightarrow \mu^{+}\mu^{-} \end{array}$		40.0 % 47.6 % 42.8 % 41.8 % 39.5 %	18.1 % 21.4 % 22.1 % 17.6 % 20.6 %	254 738 32 17 3	almost model independent	*Assuming no invisible decays (1 sigma stat. error): $\Delta \sigma_{\rm invis} = \pm 0.57 \%$				
Mark Thomson			Fermilab	o, May 2014	- 24	(CLIC beam spectrum, 500 fb ⁻¹ @ 350 GeV, no polarisation)				

In order to use this cross section measurement in our Higgs analyses we have to quantify the penalty associated with the fact that $\sigma(ZH) \cdot BR(visible)$ is "almost model independent". By how much must we blow up $\Delta\sigma(ZH) \cdot BR(visible)$ to account for the fact that the efficiencies differ by 10% or more?

* Combining visible + invisible analysis: wanted M.I.

i.e. efficiency independent of Higgs decay mode

Decay mode	$\epsilon \epsilon_{\mathscr{L}>0.70}^{\mathrm{vis}}$	$arepsilon_{ m BDT>0.08}^{ m invis}$	$\varepsilon^{\rm vis} + \varepsilon^{\rm invis}$		
$H \rightarrow invis.$	<0.1 %	20.7 %	20.7 %	7	
$H \rightarrow q\overline{q}/gg$	20.6 %	<0.1 %	20.6 %		
$H \rightarrow WW^*$	19.5 %	<0.1 %	19.8%		
$H \rightarrow ZZ^*$	18.1 %	0.9%	19.0%		Very similar
$H\to\tau^+\tau^-$	21.4 %	0.1 %	21.5 %	Γ	efficiencies
$H \rightarrow \gamma \gamma$	22.1 %	<0.1 %	22.1 %		
$H \rightarrow Z\gamma$	17.6%	<0.1 %	17.1 %		
$H \to \mu^+ \mu^-$	20.6 %	<0.1 %	20.6 %		
$H \rightarrow WW^* \rightarrow c$	<u> </u> qq <u>q</u> 19.3%	<0.1 %	19.3 %	٦	
$\mathrm{H} \rightarrow \mathrm{W}\mathrm{W}^* \rightarrow \mathrm{G}$	[q]ν 19.6%	<0.1 %	19.6%		Look at wide
${ m H} ightarrow { m W} { m W}^* ightarrow { m c}$	[qτν 19.9%]	<0.1 %	19.9 % 22.3 % 17.0 %		range of WW
$H \rightarrow WW^* \rightarrow 1$	vlv 22.0%	0.3 %			tange of WW
$H \rightarrow WW^* \rightarrow l$	ντν 16.7 %	0.3 %			topologies
$H \rightarrow WW^* \rightarrow \tau$	ντν 12.2 <i>%</i>	1.3 %	13.6%		
Mark Thomson		:			

I propose an approach where we use all of our $\sigma \cdot BR$ measurements for visible Higgs decays to obtain an estimate of the average signal efficiency for $\sigma(ZH) \cdot BR(visible)$. It is then straightforward to propagate the $\sigma \cdot BR$ errors to the error on $\sigma(ZH) \cdot BR(visible)$, This means that one must take into account the correlation between the $\sigma \cdot BR$ measurements and our $\sigma(ZH)$ measurement from hadronic Z decays when we fit for couplings and total width. It also means that we must develop $\sigma \cdot BR$ analyses for all possible visible Higgs decays -- but this we have to do anyway to extract the best errors on Higgs couplings and total width.

Let $\alpha \equiv \sigma(ZH) \cdot BR(visible)$

 ω = Number of signal events in σ (*ZH*)•*BR*(*visible*) analysis

 ξ = Average efficiency for signal events to pass σ (*ZH*)•*BR*(*visible*) analysis L = luminosity

$$\alpha = \frac{\omega}{L\xi} = \frac{1}{\xi} \sum_{i} \psi_{i} \eta_{i} \quad \text{where}$$

 $\psi_i = \sigma(ZH) \cdot BR_i$

 $\eta_i = e$ fficiency for events from Higgs decay i to pass $\sigma(ZH) \cdot BR(visible)$ analysis

$$(\Delta \alpha)^{2} = \left(\frac{\partial \alpha}{\partial \omega}\right)^{2} V_{\omega\omega} + \left(\frac{\partial \alpha}{\partial \xi}\right)^{2} V_{\xi\xi} + 2\frac{\partial \alpha}{\partial \omega}\frac{\partial \alpha}{\partial \xi} V_{\omega\xi}$$

$$V_{_{\omega\omega}} = \sum_{i} N_{\kappa i} + N_{\varepsilon i}$$

$$V_{\xi\xi} = \frac{1}{L^{2}(\sum_{i}\psi_{i})^{2}}\sum_{i}\frac{(\eta_{i}-\xi)^{2}}{(\eta'_{i})^{2}}(N_{\kappa i}+N'_{\varepsilon i})$$

 $N_{\kappa i}$ = number of events common to had Z recoil and $\sigma \cdot BR_i$ analyses

 $N_{\varepsilon i}$ = number of events unique to had Z recoil analysis $N'_{\varepsilon i}$ = number of events unique to $\sigma \cdot BR_i$ analysis η'_i = efficiency for Higgs decay i to pass $\sigma \cdot BR_i$ analysis